Results 211 to 220 of about 7,675,115 (371)

Tin‐Based 2D/3D Perovskite Vertical Heterojunction for High‐Performance Synaptic Phototransistors

open access: yesAdvanced Functional Materials, EarlyView.
Phototransistors based on tin‐based 2D/3D perovskite heterostructures show an ultrahigh responsivity and detectivity at a low gate voltage across a broad wavelength region from ultraviolet to near‐infrared. The devices can replicate neuromorphic learning and remembering behaviors to light stimuli, in addition to electric depression and memory erasure ...
Hok‐Leung Loi   +10 more
wiley   +1 more source

Tunable Tactile Synapses Enabled by Erasable Doping in Iongel‐Gated Nanotube Network Transistors

open access: yesAdvanced Functional Materials, EarlyView.
Artificial tactile synaptic sensors are realized by an iongel‐gated single‐walled carbon nanotube (SWCNT) transistor with reversible doping characteristics. The device senses and memorizes tactile stimuli and exhibits gate bias‐dependent excitatory or inhibitory synaptic behavior.
Yan Huang   +5 more
wiley   +1 more source

On the uncertainty principle of neural networks. [PDF]

open access: yesiScience
Zhang JJ   +4 more
europepmc   +1 more source

A note on chaotic behavior in simple neural networks [PDF]

open access: green, 1990
Han L. J. van der Maas   +2 more
openalex   +1 more source

Multielement Filament Memristor Enabling Multifunctional Neuromorphic Device

open access: yesAdvanced Functional Materials, EarlyView.
A new type of memristor featuring a hybrid mechanism and multifunctional applications is introduced. The proposed single device combines the alloy metal filament with the oxygen vacancy filament to achieve both resistive and threshold switching with enhanced reliability, mimicking both biological synapses and nociceptors. This study shows that filament‐
Mingu Jang   +4 more
wiley   +1 more source

Neural networks for structured grid generation. [PDF]

open access: yesSci Rep
Khairullin B, Rykovanov S, Zagidullin R.
europepmc   +1 more source

Self‐organized Criticality in Neuromorphic Nanowire Networks With Tunable and Local Dynamics

open access: yesAdvanced Functional Materials, EarlyView.
Memristive nanowire networks (NWNs) are shown to be electrically tunable to a critical state where specific local dynamics evaluated by multiterminal characterization are exploited as feature selection in nonlinear transformation (NLT) tasks.
Fabio Michieletti   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy