Results 311 to 320 of about 168,932 (360)
Some of the next articles are maybe not open access.

Hopf Bifurcation for Implicit Neutral Functional Differential Equations

Canadian Mathematical Bulletin, 1993
AbstractAn analog of the Hopf bifurcation theorem is proved for implicit neutral functional differential equations of the form F(xt, D′(xt, α), α) = 0. The proof is based on the method of S1-degree of convex-valued mappings. Examples illustrating the theorem are provided.
Kaczynski, Tomasz, Xia, Huaxing
openaire   +2 more sources

Rotating Waves in Neutral Partial Functional Differential Equations

Journal of Dynamics and Differential Equations, 1999
The local existence and global continuation of rotating waves for partial neutral functional differential equations \[ \frac{\partial }{\partial t}D(\alpha, u_t)=d\frac{\partial^2}{\partial x^2}D(\alpha,u_t)+f(\alpha,u_t)\tag{1} \] defined on the unit circle \(x\in S^1\) is investigated; where \(d>0\) is a given constant; \(D,\;f:\mathbb{R}\times X ...
Wu, J., Xia, H.
openaire   +2 more sources

Stabilization of neutral functional differential equations

Journal of Optimization Theory and Applications, 1976
In this paper, we prove a necessary and sufficient condition for feedback stabilization of neutral functional differential equations.
openaire   +2 more sources

A Neutral Functional Differential Equation of Lurie Type

SIAM Journal on Mathematical Analysis, 1980
The problem of Lurie is posed for systems described by a functional differential equation of neutral type. Sufficient conditions are obtained for absolute stability for the controlled system if it is assumed that the uncontrolled plant equation is uniformly asymptotically stable. Both the direct and indirect control cases are treated.
openaire   +1 more source

Generalized Hopf Bifurcation for Neutral Functional Differential Equations

International Journal of Bifurcation and Chaos, 2016
Here we employ the Lyapunov–Schmidt procedure to investigate bifurcations in a general neutral functional differential equation (NFDE) when the infinitesimal generator has, for a critical value of the parameter, a pair of nonsemisimple purely imaginary eigenvalues with multiplicity [Formula: see text].
openaire   +2 more sources

Stability of Cubic Neutral Functional Differential Equations

IFAC Proceedings Volumes, 2004
Abstract For different types of scalar cubic neutral functional differential equations (NFDEs) without linear terms delay-independent and delay —dependent conditions of asymptotic stability are established. All stability conditions are expressed directly in terms of equations coefficients.
V.R. Nosov   +2 more
openaire   +1 more source

Semigroups Generated by a Neutral Functional Differential Equation

SIAM Journal on Mathematical Analysis, 1986
We discuss a number of semigroups generated by neutral functional equations of the form \[ d/dt(x(t)+\mu *x(t))+\nu *x(t)=f(t),\quad t\geq 0,\quad x(t)=\phi (t),\quad t\leq 0. \] They are of extended initial function type and of extended forcing function type, and they differ from each other by the amount of smoothness which is imposed on x and f above.
openaire   +2 more sources

Home - About - Disclaimer - Privacy