On solutions of differential-functional equations of neutral type
We obtain sufficient conditions for existence of continuouslydifferentiable solutions of differential-functional equations ofneutral type with linear deviations of the argument bounded on$tinmathbb{R}^-$.
R. I. Kachurivsky
doaj
A k-Dimensional System of Fractional Neutral Functional Differential Equations with Bounded Delay
In 2010, Agarwal et al. studied the existence of a one-dimensional fractional neutral functional differential equation. In this paper, we study an initial value problem for a class of k-dimensional systems of fractional neutral functional differential ...
Dumitru Baleanu +2 more
doaj +1 more source
Oscillations in Neutral Functional Differential Equations [PDF]
Some time ago [1], the author announced a result on the Fredholm alternative for the existence of periodic solutions of a non-homogeneous linear neutral functional differential equation (NFDE). In this paper, we indicate a proof of this result and, at the same time, use the method of proof to give a brief survey of some recent developments in the ...
openaire +2 more sources
On a class of abstract neutral functional differential equations
Abstract By using the theory of semigroups of growth α , we discuss the existence of mild solutions for a class of abstract neutral functional differential equations. A concrete application to partial neutral functional differential equations is considered.
Hernandez, Eduardo +2 more
openaire +4 more sources
Oscillation for Certain Nonlinear Neutral Partial Differential Equations
We present some new oscillation criteria for second-order neutral partial functional differential equations of the form (∂/∂t){p(t)(∂/∂t)[u(x,t)+∑i=1lλi(t)u(x,t-τi)]}=a(t)Δu(x,t)+∑k=1sak(t)Δu(x,t-ρk(t))-q(x,t)f(u(x,t))-∑j=1mqj(x,t)fj(u(x,t-σj)), (x,t)∈Ω ...
Quanwen Lin, Rongkun Zhuang
doaj +1 more source
About nondecreasing solutions for first order neutral functional differential equations
Conditions that solutions of the first order neutral functional differential equation \[ (Mx)(t)\equiv x^{\prime }(t)-(Sx^{\prime })(t)-(Ax)(t)+(Bx)(t)=f(t), t\in \lbrack 0,\omega ], \] are nondecreasing are obtained.
Alexander Domoshnitsky +2 more
doaj +1 more source
On neutral functional differential equations with nonatomic difference operator
A simple prototype of the neutral functional differential equation is considered: \((d/dt)x_ t=Lx_ t+f(t),\) \(t\geq 0\), that is, (1) \(Dx_ t=\eta\), \(t\geq 0\), \(x_ 0=\phi\) is considered, where \(D\phi =\int^{0}_{-r}[d\mu (\theta)]\phi (\theta)\), \(\phi\in C(-r,0)\) or \(\phi \in L^ p\), \(\mu\) is a function of bounded variation on [-r,0] such ...
Franz Kappel, Kang Pei Zhang
openaire +3 more sources
Weighted pseudo periodic solutions of neutral functional differential equations
In this article, we introduced and explore the properties of two sets of functions: weighted pseudo periodic functions of class r, and weighted Stepanov-like pseudo periodic functions of class r. We show the existence and uniqueness of weighted pseudo
Zhinan Xia
doaj
Periodic Solutions of Functional Differential Equations of Neutral Type
The paper deals with neutral functional differential equations of the form \[ d/dt\left[x(t)-G(t,x_t)\right] =F(t,x_t),\tag{1} \] where \(F\) and \(G\) are continuous and \(T\) periodic in \(t\). Moreover for all \(r>0\) there exists a real function \(W\) defined on \(\mathbb{R}^+\), \(\lim_{b\to 0^+}W(b)=0\), such that \(|G(t,x_t)-G(s,x_s)|\leq W|t-s|\
Babram, M. Ait +2 more
openaire +2 more sources
Асимптотика детермінованих диференціально-різницевих рівнянь нейтрального типу [PDF]
Одержано критерій асимптотичної поведінки для детермінованих диференціально-різницевих рівнянь нейтрального типу. Даний метод грунтується на необхідних та достатніх умовах і не використовує додаткових конструкцій (наприклад, функціонал Ляпунова ...
Малик, І.В.
core

