Results 1 to 10 of about 71,809 (229)

Ricci-flat and Einstein pseudoriemannian nilmanifolds

open access: yesComplex Manifolds, 2019
This is partly an expository paper, where the authors’ work on pseudoriemannian Einstein metrics on nilpotent Lie groups is reviewed. A new criterion is given for the existence of a diagonal Einstein metric on a nice nilpotent Lie group.
Conti Diego, Rossi Federico A.
doaj   +2 more sources

Finite p′-nilpotent groups. I

open access: yesInternational Journal of Mathematics and Mathematical Sciences, 1987
In this paper we consider finite p′-nilpotent groups which is a generalization of finite p-nilpotent groups. This generalization leads us to consider the various special subgroups such as the Frattini subgroup, Fitting subgroup, and the hypercenter in ...
S. Srinivasan
doaj   +1 more source

First order linear ordinary differential equations in associative algebras

open access: yesElectronic Journal of Differential Equations, 2004
In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t) x b_i(t) + f(t) $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t)$ form a set of commuting $mathcal{A}$-valued functions expressed ...
Gordon Erlebacher, Garrret E. Sobczyk
doaj  

From Groups to Leibniz Algebras: Common Approaches, Parallel Results [PDF]

open access: yesAdvances in Group Theory and Applications, 2018
In this article, we study (locally) nilpotent and hyper-central Leibniz algebras. We obtained results similar to those in group theory. For instance, we proved a result analogous to the Hirsch-Plotkin Theorem for locally nilpotent groups.
L.A. Kurdachenko   +2 more
doaj   +1 more source

Finite p′-nilpotent groups. II

open access: yesInternational Journal of Mathematics and Mathematical Sciences, 1987
In this paper we continue the study of finite p′-nilpotent groups that was started in the first part of this paper. Here we give a complete characterization of all finite groups that are not p′-nilpotent but all of whose proper subgroups are p′-nilpotent.
S. Srinivasan
doaj   +1 more source

Locally finite p-groups with all subgroups either subnormal or nilpotent-by-Chernikov [PDF]

open access: yesInternational Journal of Group Theory, 2012
We pursue further our investigation, begun in [H.~Smith, Groups with all subgroups subnormal or nilpotent-by-{C}hernikov, emph{Rend. Sem. Mat. Univ. Padova} 126 (2011), 245--253] and continued in [G.~Cutolo and H.~Smith, Locally finite groups with all ...
H. Smith, G. Cutolo
doaj  

On some groups whose subnormal subgroups are contranormal-free [PDF]

open access: yesInternational Journal of Group Theory
If $G$ is a group, a subgroup $H$ of $G$ is said to be contranormal in $G$ if $H^G = G$, where $H^G$ is the normal closure of $H$ in $G$. We say that a group is contranormal-free if it does not contain proper contranormal subgroups.
Leonid Kurdachenko   +2 more
doaj   +1 more source

The algebraic classification of nilpotent commutative algebras [PDF]

open access: green, 2021
Doston Jumaniyozov   +2 more
openalex   +1 more source

A note on the normalizer of Sylow 2-subgroup of special linear group $SL_2(p^f)$ [PDF]

open access: yesInternational Journal of Group Theory, 2014
Let $G=SL_2(p^f)$ be a special linear group and $P$ be a Sylow $2$-subgroup of $G$, where $p$ is a prime and $f$ is a positive integer such that $p^f>3$. By $N_G(P)$ we denote the normalizer of $P$ in $G$.
Jiangtao Shi
doaj  

Home - About - Disclaimer - Privacy