Results 71 to 80 of about 71,809 (229)

On stabilizers in finite permutation groups

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract Let G$G$ be a permutation group on the finite set Ω$\Omega$. We prove various results about partitions of Ω$\Omega$ whose stabilizers have good properties. In particular, in every solvable permutation group there is a set‐stabilizer whose orbits have length at most 6, which is best possible and answers two questions of Babai.
Luca Sabatini
wiley   +1 more source

Nilpotency and strong nilpotency for finite semigroups [PDF]

open access: yesThe Quarterly Journal of Mathematics, 2018
AbstractNilpotent semigroups in the sense of Mal’cev are defined by semigroup identities. Finite nilpotent semigroups constitute a pseudovariety, MN, which has finite rank. The semigroup identities that define nilpotent semigroups lead us to define strongly Mal’cev nilpotent semigroups.
Almeida, J.   +2 more
openaire   +2 more sources

Conjugacy classes of parabolic subalgebras in complex semi-simple lie algebras [PDF]

open access: yes, 1976
For a complex semi simple Lie algebra g, Richardson's dense orbit theorem gives a map between conjugacy classes of parabolic subalgebras in g and conjugacy classes of nilpotent elements.
Johnston, D.S.
core  

A description of a class of finite semigroups that are near to being Malcev nilpotent

open access: yes, 2012
In this paper we continue the investigations on the algebraic structure of a finite semigroup $S$ that is determined by its associated upper non-nilpotent graph $\mathcal{N}_{S}$.
E. JESPERS   +3 more
core   +1 more source

Residually rationally solvable one‐relator groups

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We show that the intersection of the rational derived series of a one‐relator group is rationally perfect and is normally generated by a single element. As a corollary, we characterise precisely when a one‐relator group is residually rationally solvable.
Marco Linton
wiley   +1 more source

Almost inner derivations of Lie algebras

open access: yes, 2017
We study almost inner derivations of Lie algebras, which were introduced by Gordon and Wilson in their work on isospectral deformations of compact solvmanifolds.
Burde, Dietrich   +2 more
core   +1 more source

Radical preservation and the finitistic dimension

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract We introduce the notion of radical preservation and prove that a radical‐preserving homomorphism of left artinian rings of finite projective dimension with superfluous kernel reflects the finiteness of the little finitistic, big finitistic, and global dimension.
Odysseas Giatagantzidis
wiley   +1 more source

Equivariant v1,0⃗$v_{1,\vec{0}}$‐self maps

open access: yesBulletin of the London Mathematical Society, Volume 58, Issue 1, January 2026.
Abstract Let G$G$ be a cyclic p$p$‐group or generalized quaternion group, X∈π0SG$X\in \pi _0 S_G$ be a virtual G$G$‐set, and V$V$ be a fixed point free complex G$G$‐representation. Under conditions depending on the sizes of G$G$, X$X$, and V$V$, we construct a self map v:ΣVC(X)(p)→C(X)(p)$v\colon \Sigma ^V C(X)_{(p)}\rightarrow C(X)_{(p)}$ on the ...
William Balderrama   +2 more
wiley   +1 more source

Coxeter's enumeration of Coxeter groups

open access: yesJournal of the London Mathematical Society, Volume 113, Issue 1, January 2026.
Abstract In a short paper that appeared in the Journal of the London Mathematical Society in 1934, H. S. M. Coxeter completed the classification of finite Coxeter groups. In this survey, we describe what Coxeter did in this paper and examine an assortment of topics that illustrate the broad and enduring influence of Coxeter's paper on developments in ...
Bernhard Mühlherr, Richard M. Weiss
wiley   +1 more source

Nilpotent Cofinitary Groups

open access: yesJournal of Algebra, 1995
Let \(D\) be a division ring, \(V\) a vector space over \(D\) of infinite dimension. Say that an element \(g \in \text{GL} (V)\) is cofinitary if \(\dim_D C_V (g)\) is finite. A subgroup \(G \leq \text{GL} (V)\) is called cofinitary if all its non-trivial elements are cofinitary.
openaire   +1 more source

Home - About - Disclaimer - Privacy