Results 21 to 30 of about 53,696 (220)
Groups whose Proper Subgroups of Infinite Rank are Minimax-by-Nilpotent or Nilpotent-by-Minimax [PDF]
Let M denote the class of of soluble-by-finite minimax groups, and N the class of nilpotent groups. The main result states that if G is a group of infinite rank whose proper subgroups of infinite rank are MN-groups, then G is either in MN or it is a ...
Amel Zitouni
doaj +1 more source
On Torsion-by-Nilpotent Groups [PDF]
AbstractLet C be a class of groups, closed under taking subgroups and quotients. We prove that if all metabelian groups of C are torsion-by-nilpotent, then all soluble groups of C are torsion-by-nilpotent. From that, we deduce the following consequence, similar to a well-known result of P. Hall (1958, Illinois J.
Gérard Endimioni, Gunnar Traustason
openaire +1 more source
Probabilistic nilpotence in infinite groups [PDF]
32 pages. Minor proofreading corrections.
Matthew Tointon+4 more
openaire +6 more sources
In this paper, we introduce a new definition for nilpotent fuzzy subgroups, which is called the good nilpotent fuzzy subgroup or briefly g-nilpotent fuzzy subgroup.
Elaheh Mohammadzadeh, Rajab Ali Borzooei
doaj +1 more source
On groups covered by locally nilpotent subgroups [PDF]
Let N be the class of pronilpotent groups, or the class of locally nilpotent profinite groups, or the class of strongly locally nilpotent profinite groups. It is proved that a profinite group G is finite-by-N if and only if G is covered by countably many
Detomi, Eloisa+2 more
core +1 more source
From Groups to Leibniz Algebras: Common Approaches, Parallel Results [PDF]
In this article, we study (locally) nilpotent and hyper-central Leibniz algebras. We obtained results similar to those in group theory. For instance, we proved a result analogous to the Hirsch-Plotkin Theorem for locally nilpotent groups.
L.A. Kurdachenko+2 more
doaj +1 more source
Generalized Analogs of the Heisenberg Uncertainty Inequality [PDF]
We investigate locally compact topological groups for which a generalized analogue of Heisenberg uncertainty inequality hold. In particular, it is shown that this inequality holds for $\mathbb{R}^n \times K$ (where $K$ is a separable unimodular locally ...
Bansal, Ashish, Kumar, Ajay
core +2 more sources
AbstarctLetγn= [x1,…,xn] be thenth lower central word. Denote byXnthe set ofγn-values in a groupGand suppose that there is a numbermsuch that$|{g^{{X_n}}}| \le m$for eachg∈G. We prove thatγn+1(G)has finite (m, n) -bounded order. This generalizes the much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.
ELOISA DETOMI+3 more
openaire +5 more sources
Fitting quotients of finitely presented abelian-by-nilpotent groups [PDF]
We show that every finitely generated nilpotent group of class 2 occurs as the quotient of a finitely presented abelian-by-nilpotent group by its largest nilpotent normal subgroup.Comment: This second version takes into account the suggestions by the ...
Groves, J. R. J., Strebel, Ralph
core +2 more sources
Let $N$ be a nilpotent group normal in a group $G$. Suppose that $G$ acts transitively upon the points of a finite non-Desarguesian projective plane ${\cal P}$. We prove that, if ${\cal P}$ has square order, then $N$ must act semi-regularly on ${\cal P}$.
openaire +4 more sources