Results 31 to 40 of about 12,692,686 (297)
On the permutability of Sylow subgroups with derived subgroups of B-subgroups
A finite non-nilpotent group G is called a B-group if every proper subgroup of the quotient group G/Φ(G) is nilpotent. We establish the r-solvability of the group in which some Sylow r-subgroup permutes with the derived subgroups of 2-nilpotent (or 2 ...
Ekaterina V. Zubei
doaj +1 more source
The nilpotent ( p-group) of (D25 X C2n) for m > 5 [PDF]
Every finite p-group is nilpotent. The nilpotence property is an hereditary one. Thus, every finite p-group possesses certain remarkable characteristics.
Sunday Adesina Adebisi +2 more
doaj +1 more source
Let \(G\) be a finite group and order the set of sizes of conjugacy classes of \(G\) decreasingly to obtain what is called the conjugate type vector of \(G\). The authors show by examples that if \(H\) is nilpotent and if \(G\) and \(H\) have the same conjugate type vector, then \(G\) is not necessarily nilpotent.
Camina, A.R., Camina, R.D.
openaire +2 more sources
The solvability of groups with nilpotent minimal coverings [PDF]
A covering of a group is a finite set of proper subgroups whose union is the whole group. A covering is minimal if there is no covering of smaller cardinality, and it is nilpotent if all its members are nilpotent subgroups. We complete a proof that every
Blyth, Russell D. +2 more
core +2 more sources
The t-Fibonacci sequences in the 2-generator p-groups of nilpotency class 2 [PDF]
In this paper, we consider the 2-generator p-groups of nilpotency class 2. We will discuss the lengths of the periods of the t-Fibonacci sequences in these groups.
Elahe Mehraban +2 more
doaj +1 more source
On the separability of subgroups of nilpotent groups by root classes of groups [PDF]
Suppose that 𝒞 is a class of groups consisting only of periodic groups and P ( C ) ′ \mathfrak{P}(\mathcal{C})^{\prime} is the set of prime numbers that do not divide the order of any element of a 𝒞-group.
E. V. Sokolov
semanticscholar +1 more source
On almost finitely generated nilpotent groups
A nilpotent group G is fgp if Gp, is finitely generated (fg) as a p-local group for all primes p; it is fg-like if there exists a nilpotent fg group H such that Gp≃Hp for all primes p.
Peter Hilton, Robert Militello
doaj +1 more source
On some groups whose subnormal subgroups are contranormal-free [PDF]
If $G$ is a group, a subgroup $H$ of $G$ is said to be contranormal in $G$ if $H^G = G$, where $H^G$ is the normal closure of $H$ in $G$. We say that a group is contranormal-free if it does not contain proper contranormal subgroups.
Leonid Kurdachenko +2 more
doaj +1 more source
Quiver theories and formulae for nilpotent orbits of Exceptional algebras
We treat the topic of the closures of the nilpotent orbits of the Lie algebras of Exceptional groups through their descriptions as moduli spaces, in terms of Hilbert series and the highest weight generating functions for their representation content.
Amihay Hanany, Rudolph Kalveks
doaj +1 more source
Random Nilpotent Groups I [PDF]
We study random nilpotent groups in the well-established style of random groups, by choosing relators uniformly among freely reduced words of (nearly) equal length and letting the length tend to infinity. Whereas random groups are quotients of a free group by such a random set of relators, random nilpotent groups are formed as corresponding quotients ...
Cordes, Matthew +4 more
openaire +2 more sources

