Results 61 to 70 of about 12,691,089 (279)
Locally finite p-groups with all subgroups either subnormal or nilpotent-by-Chernikov [PDF]
We pursue further our investigation, begun in [H.~Smith, Groups with all subgroups subnormal or nilpotent-by-{C}hernikov, emph{Rend. Sem. Mat. Univ. Padova} 126 (2011), 245--253] and continued in [G.~Cutolo and H.~Smith, Locally finite groups with all ...
H. Smith, G. Cutolo
doaj
Nilpotent Groups Acting on Abelian Groups [PDF]
In this paper, we study certain properties of the group ring of a nilpotent group which are related to commutativity and conjugation. We establish some relations involving conjugates of the elements of the group ring; these relations are then used to get a better understanding of torsion in abelian-by-nilpotent groups; we shall see notably that given ...
Cassidy, Charles, Laberge, Guy
openaire +1 more source
Full residual finiteness growths of nilpotent groups [PDF]
Full residual finiteness growth of a finitely generated group G measures how efficiently word metric n-balls of G inject into finite quotients of G. We initiate a study of this growth over the class of nilpotent groups.
K. Bou-Rabee, Daniel Studenmund
semanticscholar +1 more source
Locally Nilpotent Linear Groups
We survey aspects of locally nilpotent linear groups. Then we obtain a new classification; namely, we classify the irreducible maximal locally nilpotent subgroups of $\mathrm{GL}(q, \mathbb F)$ for prime $q$ and any field $\mathbb F$.
Detinko, A. S., Flannery, D. L.
openaire +2 more sources
Solvability of invariant systems of differential equations on H2$\mathbb {H}^2$ and beyond
Abstract We show how the Fourier transform for distributional sections of vector bundles over symmetric spaces of non‐compact type G/K$G/K$ can be used for questions of solvability of systems of invariant differential equations in analogy to Hörmander's proof of the Ehrenpreis–Malgrange theorem.
Martin Olbrich, Guendalina Palmirotta
wiley +1 more source
Completeness of coherent state subsystems for nilpotent Lie groups
Let $G$ be a nilpotent Lie group and let $\pi $ be a coherent state representation of $G$. The interplay between the cyclicity of the restriction $\pi |_{\Gamma }$ to a lattice $\Gamma \le G$ and the completeness of subsystems of coherent states based on
van Velthoven, Jordy Timo
doaj +1 more source
A survey on groups with some restrictions on normalizers or centralizers [PDF]
We consider conditions on normalizers or centralizers in a group and we collect results showing how such conditions influence the structure of the group.
Leire Legarreta, Maria Tota
doaj +1 more source
The BRST invariant Lagrangian of the gravitationally interacting U(1)$U(1)$ gauge theory, namely the Quantum GraviElectro Dynamics (QGED). The Yan–Mills theory with the Hilbert–Einstein gravitational Lagrangian, namely the Yang–Mills–Utiyama (YMU) theory, is defined and quantised using the standard procedure. The theory is perturbatively renormalisable,
Yoshimasa Kurihara
wiley +1 more source
Diophantine problems in solvable groups [PDF]
We study the Diophantine problem (decidability of finite systems of equations) in different classes of finitely generated solvable groups (nilpotent, polycyclic, metabelian, free solvable, etc.), which satisfy some natural “non-commutativity” conditions.
Albert Garreta +2 more
doaj +1 more source
Abstract In this article I consider type II superstring in the pure spinor formulation with constant background fields in the context of T‐dualization. First, I prove that bosonic and fermionic T‐dualization commute using already known T‐dual transformation laws for bosonic and fermionic T‐dualization.
B. Nikolić
wiley +1 more source

