Results 181 to 190 of about 405,811 (291)

Alphaviral Capsid Proteins Inhibit Stress Granule Assembly via Competitive RNA Binding With G3BP1

open access: yesAdvanced Science, EarlyView.
Stress granules exert antiviral functions. This study illustrates a conserved function of alphaviral capsid proteins in modulating stress granules. Oligomerization mediated by a helical motif coupled with a positively charged intrinsically disordered region (IDR) directly competes with G3BP1 for RNA binding, thereby disrupting G3BP1‐RNA liquid–liquid ...
Yun Zhang   +10 more
wiley   +1 more source

RESEARCHES ON NITROCELLULOSE. [PDF]

open access: yesJournal of the American Chemical Society, 1901
openaire   +1 more source

A Non‐Mitophagy Activity of BNIP3L/NIX in Amygdala Glutamatergic Neurons is Essential for Contextual Fear Memory Formation

open access: yesAdvanced Science, EarlyView.
Contextual fear conditioning induces BNIP3L‐dependent mitochondrial fission in glutamatergic neurons of the BLA, independently of mitophagy. Loss of BNIP3L elevates Drp1Ser637 phosphorylation, thereby suppressing mitochondrial fission, compromising ATP production, and attenuating excitatory synaptic transmission.
Xingxian Zhang   +13 more
wiley   +1 more source

Visualizing and Quantifying Impact with Mechanochromic Sensing Paints Based on Self‐Assembled Polydiacetylene‐Silk Core‐Shell Vesicles

open access: yesAdvanced Science, EarlyView.
Tracking physical impacts is important in many fields. Self‐assembled microparticles made from polydiacetylene and silk fibroin that change color from blue to red when hit can provide an alternative approach to traditional mechanical transducers, quantitatively visualizing impact with responses ranging from <100 to 770 N.
Marco Lo Presti   +4 more
wiley   +1 more source

Cortical Somatostatin Neurons Regulate Seizure Susceptibility via MINAR1/Gαs–cAMP Signaling

open access: yesAdvanced Science, EarlyView.
Our study identifies MINAR1 as a novel regulator of cortical interneuron excitability and seizure susceptibility. MINAR1 is preferentially expressed in SST+ interneurons. Genetic ablation of MINAR1 leads to seizure hypersensitivity, reduced SST+ neuron excitability, and impaired Gαs–cAMP signaling, disrupting the E/I balance.
Wei‐Tang Liu   +20 more
wiley   +1 more source

Home - About - Disclaimer - Privacy