Results 71 to 80 of about 488,672 (293)
This study uncovers the unexplored role of intermolecular interactions in multiphoton absorption in coordination polymers. By analyzing [Zn2tpda(DMA)2(DMF)0.3], it shows how the electronic coupling of the chromophores and confinement in the MOF enhance two‐and three‐photon absorption.
Simon Nicolas Deger +11 more
wiley +1 more source
Metal‐tetracene dimeric complexes are synthesized through the pyridyl coordination to either Pt(II) or Pd(II). Photophysical properties are systematically compared as a function of the metal using steady‐state and time‐resolved spectroscopy. The Pt(II) dimer exhibits efficient intramolecular singlet fission and subsequent intramolecular up‐conversion ...
Yifan Bo +4 more
wiley +1 more source
A robust, deep learning-based analysis of time-domain signals for NMR spectroscopy
When analyzing the Free Induction Decay (FID) signal produced by nuclear magnetic resonance (NMR) spectroscopy, Fourier transforms (FT) are used to decompose time-domain signals arising from nuclear interactions.
Kyungdoe Han +3 more
doaj +1 more source
Ion and polymer dynamics in polymer electrolytes PPO-LiClO4: insights from NMR line-shape analysis
We investigate ion and polymer dynamics in polymer electrolytes PPO-LiClO4 performing 2H and 7Li NMR line-shape analysis. Comparison of temperature dependent 7Li and 2H NMR spectra gives evidence for a coupling of ion and polymer dynamics. 2H NMR spectra
Thorbrugge, T., Vogel, M.
core +1 more source
Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng +7 more
wiley +1 more source
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida +16 more
wiley +1 more source
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies +8 more
wiley +1 more source
The charge ordered state in half-doped Bi-based manganites studied by $^{17}$O and $^{209}$Bi NMR
We present a $^{209}$Bi and $^{17}$O NMR study of the Mn electron spin correlations developed in the charge ordered state of Bi$_{0.5}$Sr$_{0.5}$MnO$_{3}$ and Bi$_{0.5}$Ca$_{0.5}$MnO$_{3}$.
A. Gerashenko +15 more
core +1 more source
This work reports the self‐assembly of a pyrene derivative into two distinct nanostructures and their application in visible‐light photocatalysis. The two nanostructures exhibit completely different yet complementary photocatalytic activities, promoting either H2 or H2O2 evolution.
Marianna Barbieri +6 more
wiley +1 more source
Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any ...
Günther Ulrich L +3 more
doaj +1 more source

