Results 321 to 330 of about 7,028,550 (415)

A Novel Noise Reduction Approach of Acoustic Emission (AE) Signals in the SiC Lapping Process on Fixed Abrasive Pads. [PDF]

open access: yesMicromachines (Basel)
Lin J   +10 more
europepmc   +1 more source

High‐Fidelity Directed Self‐Assembly Using Higher‐χ Polystyrene‐Block‐Poly(Methyl Methacrylate) Derivatives for Dislocation‐Free Sub‐10 nm Features

open access: yesAdvanced Functional Materials, EarlyView.
The relationship between primary polymer structure and pattern quality in the directed self‐assembly of chemically modified polystyrene‐block‐poly(methyl methacrylate) derivatives is explored. The perpendicular lamellae are aligned, with a periodicity below 20 nm. No parallel orientations or dislocations form, and line patterns are well defined over an
Shinsuke Maekawa   +8 more
wiley   +1 more source

Highly Off‐Centering Cations in Pavonite‐Structured Ag1.75InSb5.75Se11 with Competitive Thermoelectric Performance

open access: yesAdvanced Functional Materials, EarlyView.
Off‐centering of cations in pavonite‐structured Ag1.75InSb5.75Se11 (AISS) breaks crystal symmetry, inducing Rashba‐like band splitting and high band degeneracy, thus enhancing Seebeck coefficients. Soft bonds between off‐centered cations and Se atoms increase phonon scattering, achieving low lattice thermal conductivity (0.22 W m−1K−1 at 723 K). Doping
Chenghao Xie   +7 more
wiley   +1 more source

Bi‐Directional Assembly of Boron Nitride µ‐Platelets by Micro‐Molding for Advanced Thermal Interface Materials

open access: yesAdvanced Functional Materials, EarlyView.
Bi‐directionally assembled BN µ‐platelets in micropatterns formed by a micro‐molding method for thermal interface materials are demonstrated. The BN µ‐platelets are vertically aligned selectively, while compressed regions without patterns accommodate horizontally assembled BN µ‐platelets. Through anisotropic orientation, high thermal conductivities for
Young Gil Kim   +12 more
wiley   +1 more source

Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity

open access: yesAdvanced Functional Materials, EarlyView.
A highly sensitive crack‐based sensor with tunable strain detection capabilities is demonstrated through controlled nanocrack formation in a line‐patterned shape memory polymer substrate. The sensor design integrates thermoplastic polyurethane and poly(lactic acid), enabling thermo‐responsive reconfiguration of crack geometry.
Seungjae Lee   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy