Results 171 to 180 of about 555,673 (291)

Recomposable Layered Metasurfaces for Wavelength‐Multiplexed Optical Encryption via Modular Diffractive Deep Neural Networks

open access: yesAdvanced Functional Materials, EarlyView.
Modular diffractive deep neural network metasurfaces encode and reconstruct holograms across layer combinations and wavelengths, enabling secure, multifunctional operation. Each layer acts independently yet composes jointly, yielding up to m(2N −1) channels for m wavelengths and N layers.
Cherry Park   +4 more
wiley   +1 more source

Voltage imaging with periodic structured illumination. [PDF]

open access: yesBiomed Opt Express
Speed F   +6 more
europepmc   +1 more source

Chiral Nanohoops as an Efficient Spin Polarization System

open access: yesAdvanced Functional Materials, EarlyView.
Chiral conjugated nanohoops with a central dibenzopentalene unit exhibit 90% spin polarization at low voltage and high conductivity. These properties make them ideal components in molecular spintronics applications. Abstract A central challenge in molecular spintronics is to achieve a high spin polarization at low operating voltages and ambient ...
Anu Gupta   +4 more
wiley   +1 more source

Multistackable, Domino‐Overlapped CNT Scaffolds Homogeneously Hybridized with BTO‐P(VDF‐TrFE) for High‐Performance Piezoelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
A multilayer‐stackable carbon nanotuber (CNT) scaffold‐based piezoelectric nanogenerator (CPENG) with domino‐patterned CNT pillars presents high, stable output (12.3 V, size of 1 cm × 1 cm) over 2000 cycles, operates across a wide temperature range, and efficiently converts energy from real‐life stimuli through optimized CNT length, layer stacking, and
Kwangjun Kim   +3 more
wiley   +1 more source

Real‐Time, Label‐Free Monitoring of Cell Behavior on a Bioelectronic Scaffold

open access: yesAdvanced Functional Materials, EarlyView.
A bioelectronic nanofibrous scaffold is introduced that supports cell growth while enabling real‐time, label‐free monitoring of cellular behavior through impedance measurements. The system correlates electrical signals with cell viability and surface coverage, offering an integrated platform for studying dynamic biological processes and advancing next ...
Dana Cohen‐Gerassi   +10 more
wiley   +1 more source

Cold Quad‐Modal Nanocomplex for Precise and Quantitative In Vivo Stem Cell Tracking

open access: yesAdvanced Functional Materials, EarlyView.
Multimodal albumin–bismuth sulfide–superparamagnetic iron oxide (ABS) nanocomplexes are developed for stem cell tracking across four different imaging modalities: MRI, MPI, MSOT, and CT. Combining its flexibility with high sensitivity, this quad‐modal imaging agent enables a robust quantification of ABS‐labeled stem cells in vivo.
Ali Shakeri‐Zadeh   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy