Results 201 to 210 of about 373,888 (279)

Near‐Infrared Light‐Programmable Negative Differential Transconductance in Organic Electrochemical Transistors for Reconfigurable Logic

open access: yesAdvanced Functional Materials, EarlyView.
Organic electrochemical transistors based on a Near‐Infrared (NIR)‐responsive polymer p(C4DPP‐T) and iodide electrolyte exhibit optically programmable negative differential transconductance. NIR illumination triggers an iodine‐mediated redox process, enabling a transition from binary to ternary conductance states within a single‐layer device.
Debdatta Panigrahi   +7 more
wiley   +1 more source

Universal Electronic‐Structure Relationship Governing Intrinsic Magnetic Properties in Permanent Magnets

open access: yesAdvanced Functional Materials, EarlyView.
Permanent magnets derive their extraordinary strength from deep, universal electronic‐structure principles that control magnetization, anisotropy, and intrinsic performance. This work uncovers those governing rules, examines modern modeling and AI‐driven discovery methods, identifies critical bottlenecks, and reveals electronic fingerprints shared ...
Prashant Singh
wiley   +1 more source

Switchable Thermal Mid‐IR Conducting Polymer Antenna Arrays

open access: yesAdvanced Functional Materials, EarlyView.
This study presents switchable mid‐infrared plasmonic resonances in PEDOT antenna arrays. Their optical extinction peaks can be reversibly switched ‘OFF’ and ‘ON’ by tuning the polaronic charge carrier concentration via the polymer's redox state, offering modulation of optical responses in the thermal mid‐infrared range including around 10 µm ...
Pravallika Bandaru   +5 more
wiley   +1 more source

High Entropy Wide‐Bandgap Borates with Broadband Luminescence and Large Nonlinear Optical properties

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy rare‐earth borates exhibit excellent nonlinear optical and broadband luminescence properties arising from multi‐component doping, chemical disorder, increased configurational entropy, and increased lattice and electronic anharmonicity. This formulation enabled us to obtain a large, environmentally stable single crystal with 3X higher laser‐
Saugata Sarker   +14 more
wiley   +1 more source

Trap‐Assisted Transport and Neuromorphic Plasticity in Lead‐Free 2D Perovskites PEA2SnI4

open access: yesAdvanced Functional Materials, EarlyView.
An artificial retina built from lead‐free layered perovskite (PEA)2SnI4 converts light input into a persistent photocurrent and sums successive flashes over time. Micro/nanocrystals integrated on electrodes act as synapse‐like pixels that perform temporal integration directly in hardware. This in‐sensor preprocessing merges detection and computation on
Ofelia Durante   +17 more
wiley   +1 more source

Rolling and Impacting Caustic Drops on Super Liquid‐Repellent Surfaces: In Situ Force and Energy Monitoring of Surface Degradation

open access: yesAdvanced Functional Materials, EarlyView.
The use of continuous drop‐based force and energy probing methods is introduced to evaluate in situ chemical degradation of super liquid‐repellent surfaces by caustic liquids. By tracking the velocity of rolling drops and energy dissipation of impacting drops, degradation dynamics are resolved under high spatio‐temporal precision. Using this technique,
Parham Koochak   +2 more
wiley   +1 more source

Indirect Band Edge and Chain‐Locked Linear Dichroism in the Quasi‐1D Van der Waals Antiferromagnet AgCrP2S6

open access: yesAdvanced Functional Materials, EarlyView.
AgCrP2S6 reveals a momentum‐indirect band edge (≈1.35 eV) and chain‐locked linear dichroism: the first direct transitions emerge at 1.6–1.8 eV for E||a. Resonant Raman and photoemission corroborate this assignment. In ACPS/graphene heterostructures, photocurrent turns on above ≈1.5 eV and follows the same polarization selection rules (anisotropy ≈0.53),
Oleksandr Volochanskyi   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy