Boundedness of Calderón–Zygmund Operators on Non-homogeneous Metric Measure Spaces [PDF]
AbstractLet (𝒳,d, μ) be a separable metric measure space satisfying the known upper doubling condition, the geometrical doubling condition, and the non-atomic condition that μ(﹛x﹜) = 0 for allx∈ 𝒳. In this paper, we show that the boundedness of a Calderón–Zygmund operatorTonL2(μ) is equivalent to that ofTonLp(μ) for somep∈ (1,∞), and that ofTfromL1(μ ...
Tuomas Hytönen +3 more
openalex +5 more sources
GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS OVER NON-HOMOGENEOUS METRIC MEASURE SPACES [PDF]
Taiwanese J. Math. (to appear)
Xing Fu, Dachun Yang, Wen Yuan
openalex +4 more sources
Maximal Multilinear Commutators on Non-homogeneous Metric Measure Spaces
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Jie Chen, Haibo Lin
openalex +4 more sources
An Interpolation Theorem for Sublinear Operators on Non-homogeneous Metric Measure Spaces [PDF]
Let $({\mathcal X}, d, )$ be a metric measure space and satisfy the so-called upper doubling condition and the geometrically doubling condition. In this paper, the authors establish an interpolation result that a sublinear operator which is bounded from the Hardy space $H^1( )$ to $L^{1,\,\infty}( )$ and from $L^\infty( )$ to the BMO-type space ${\
Haibo Lin, Dongyong Yang
+7 more sources
Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces [PDF]
Let $({\mathcal X},\,d,\, )$ be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of T. Hyt nen. In this paper, the authors prove that the $L^p( )$ boundedness with $p\in(1,\,\infty)$ of the Marcinkiewicz integral is equivalent to either of its boundedness from $L^1( )$ into $L^{1 ...
Haibo Lin, Dachun Yang
openalex +5 more sources
Hardy spaces H p over non-homogeneous metric measure spaces and their applications [PDF]
Let $({\mathcal X},d, )$ be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.
Xing Fu +7 more
openalex +4 more sources
Spaces of Type BLO on Non-homogeneous Metric Measure Spaces [PDF]
Let $({\mathcal X}, d, )$ be a metric measure space and satisfy the so-called upper doubling condition and the geometrically doubling condition. In this paper, the authors introduce the space ${\mathop\mathrm{RBLO}}( )$ and prove that it is a subset of the known space ${\mathop\mathrm{RBMO}}( )$ in this context.
Haibo Lin, Dachun Yang
openalex +3 more sources
<abstract><p>Let $ {\mathcal{I}_{\alpha, m}} $ be the multilinear $ \theta $-type generalized fractional integrals and $ \vec{b}_{\sigma} $ be the vector with each $ b_{\sigma_{i}} \in \widetilde{{\rm{RBMO}}}\left(\mu\right) $. The boundedness for $ {\mathcal{I}_{\alpha, m}} $ and the iterated multi-commutators $ {\mathcal{I}_{\alpha, m ...
Xiangxing Tao, Jiahui Wang
openalex +3 more sources
The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Yonghui Cao, Jiang Zhou
openalex +3 more sources
Multilinear fractional integral operators on non-homogeneous metric measure spaces [PDF]
En este trabajo, se obtiene la delimitación en espacios de Lebesgue para operadores integrales fraccionarios multilineales y conmutadores generados por integrales fraccionarias multilineales con una función $\operatorname{RBMO}(\mu)$ en espacios de medida métrica no homogéneos.
Huajun Gong, Rulong Xie, Chen Xu
+7 more sources

