Results 161 to 170 of about 42,025 (277)

Biointerface Membranes Orchestrating Site‐Specific Osteoimmunomodulatory and Antibacterial Effects for Enhanced Osseous Regeneration in Periodontal Therapy

open access: yesAdvanced Functional Materials, EarlyView.
Here, a biointerface membrane engineered with site‐specific interfacial properties is developed. During implantation between gingival and bone defect, the membrane creates a pro‐osteogenic microenvironment, precisely modulates cellular activities at each biointerface, and facilitates the orchestration of complex healing events, ultimately leading to ...
Yuwei Zhu   +13 more
wiley   +1 more source

Urinary N-methylnicotinamide and β-aminoisobutyric acid predict catch-up growth in undernourished Brazilian children [PDF]

open access: yes, 2015
Guerrant, RL   +10 more
core   +1 more source

Tissue Engineered Human Elastic Cartilage From Primary Auricular Chondrocytes for Ear Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
Despite over three decades of research, no tissue‐engineered solution for auricular reconstruction in microtia patients has reached clinical translation. The key challenge lies in generating functional elastic cartilage ex vivo. Here, we integrate synergistic cell‐biomaterial strategies to engineer auricular grafts with mechanical and histological ...
Philipp Fisch   +13 more
wiley   +1 more source

Application of magnetic resonance for non-invasive phenotyping of mice with altered metabolism

open access: yes, 2016
Changes in myocardial energetics have been implicated in the pathophysiology of heart failure (HF). However, the precise contribution of creatine (Cr) / phosphocreatine (PCr) / creatine kinase (CK) energy buffer and transfer remains unclear. The aim of this thesis was to study the effects on murine cardiac function of both impairment and enhancement of
Faller, K, Faller, Kiterie M E
openaire   +1 more source

Mechanical and Electrical Phenotype of hiPSC‐Cardiomyocytes on Fibronectin‐Based Hydrogels

open access: yesAdvanced Healthcare Materials, EarlyView.
We introduce fibronectin‐based PEG hydrogels with controlled rigidity to enable the culture of iPSC‐derived cardiomyocytes. These substrates offer an alternative to the current culture of these cells on fibronectin‐coated glass, providing enhanced structural and functional behavior. The system provides a more physiologically relevant platform to assess
Ana Da Silva Costa   +8 more
wiley   +1 more source

Translational Considerations for Injectable Biomaterials and Bioscaffolds to Repair and Regenerate Brain Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley   +1 more source

Decellularized Extracellular Matrix Scaffolds to Engineer the Dormant Landscape of Microscopic Colorectal Cancer Liver Metastasis

open access: yesAdvanced Healthcare Materials, EarlyView.
Decellularized liver extracellular matrix scaffolds provide a platform to study dormant liver‐metastatic colorectal cancer. They induce reversible dormancy, in combination with nutrient depletion and low dose chemotherapy, through cell cycle arrest and chemotherapy resistance.
Sabrina N. VandenHeuvel   +13 more
wiley   +1 more source

Bioprinting Organs—Science or Fiction?—A Review From Students to Students

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu   +18 more
wiley   +1 more source

A Sacrificial 3D Printed Vessel‐on‐Chip Demonstrates a Versatile Approach to Model Granulation Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel method that combines 3D printing and organ‐on‐chip technology enables the creation of hollow channels lined with endothelial cells through a fibroblast‐populated connective tissue matrix. The model supports stable metabolic culture conditions, angiogenic sprouting, and immune cell migration, thereby demonstrating an easy and versatile method to
Jonas Jäger   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy