Results 201 to 210 of about 230,067 (266)

Non-volatile Memory for Space

open access: yesNon-volatile Memory for Space
第26回マイクロエレクトロニクスワークショップ(MEWS26) (2013年10月24日-25日. つくば国際会議場), つくば市, 茨城 The 26th Microelectronics Workshop (MEWS26) (October 24-25, 2013. Tsukuba International Congress Center), Tsukuba, Ibaraki, Japan 形態: カラー図版あり Physical characteristics: Original contains color illustrations 資料番号 ...
openaire  

Crystal Engineering of Reticular Materials for Gas‐ and Liquid‐Phase Hydrocarbon Separation

open access: yesAdvanced Materials, EarlyView.
Crystal engineering enables systematic study of structure/function relationships as exemplified by pore engineering of reticular sorbents, including porous coordination networks and covalent organic frameworks. This review assesses such studies applied across the full scope of industrially relevant hydrocarbon separations to provide insight into how ...
Xia Li   +2 more
wiley   +1 more source

Additive Manufacturing of Molecular Architecture Encoded Stretchable Polyethylene Glycol Hydrogels and Elastomers

open access: yesAdvanced Materials, EarlyView.
Bottlebrush molecular architecture prevents the crystallization of high molecular weight polyethylene glycol (PEG) based polymers, enabling highly stretchable photocurable PEG hydrogels and elastomers for high‐performance conductive solvent‐free electrolytes at room temperature and for additive manufacturing of complex architectures and multi‐material ...
Baiqiang Huang   +5 more
wiley   +1 more source

2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning. [PDF]

open access: yesNat Commun
Tong B   +15 more
europepmc   +1 more source

Reactive Carbide‐Based Synthesis and Microstructure of NASICON Sodium Metal All Solid‐State Electrolyte

open access: yesAdvanced Materials, EarlyView.
Sodium Metal All‐Solid State Batteries (Na‐ASSBs) are enabled by the synthesis of the solid state electrolyte, NASICON (Na1+xZr2SixP3‐xO12), using carbide‐based precursor compounds (ZrC and SiC); resulting in dense, pure, and mechanically improved microstructure.
Callum J. Campbell   +10 more
wiley   +1 more source

Unravelling the Secret of Sulfur Confinement and High Sulfur Utilization in Hybrid Sulfur‐Carbons

open access: yesAdvanced Materials, EarlyView.
Thermal condensation of inverse vulcanized sulfur‐carbon hybrids enables a bottom‐up sulfur confinement strategy, in which a protective carbon phase is progressively constructed around sulfur species. The resulting carbon nanodomains covalently tether sulfur chains and stabilize radical intermediates. This integrated architecture effectively suppresses
Tim Horner   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy