Results 221 to 230 of about 372,861 (293)

Photonic Time Crystals and Time‐Varying Electromagnetic Metamatter: A New Direction for Ultrafast Tunable Photonic and Microwave Materials and Devices

open access: yesAdvanced Science, EarlyView.
Photonic time crystals (PTCs) are systems in which electromagnetic parameters are modulated periodically in time, producing momentum bandgaps via temporal scattering rather than spatial Bragg processes. This review examines the theoretical frameworks, modeling, and computational tools for time‐varying media, and summarizes experimental demonstrations ...
Ranjan Kumar Patel   +3 more
wiley   +1 more source

Evaporation‐Driven Solutal Marangoni Control of Rayleigh–Taylor Instability in Inverted Films

open access: yesAdvanced Science, EarlyView.
Inverted liquid films, like paint on a ceiling, are inherently unstable under gravity. This work shows that selective evaporation in volatile binary mixtures generates solutal Marangoni stresses that either suppress or amplify the Rayleigh Taylor instability.
Minwoo Choi, Hyejoon Jun, Hyoungsoo Kim
wiley   +1 more source

Deformation Driven Suction Cups: A Mechanics‐Based Approach to Wearable Electronics

open access: yesAdvanced Science, EarlyView.
Deformation‐driven suction cups enable robust, reversible adhesion of wearable electronics to human skin spanning wide mechanical compliance, without adhesives or tight straps. By integrating mechanics modeling, experiments, and contact mechanics theory, this work reveals how cup geometry, substrate compliance, and interfacial adhesion govern suction ...
Seola Lee   +10 more
wiley   +1 more source

Accelerated Discovery of Topological Conductors for Nanoscale Interconnects

open access: yesAdvanced Science, EarlyView.
Copper interconnects exhibit a sharp increase in resistivity at ultra‐scaled dimensions, threatening continued miniaturization of integrated circuits. The gapless surface states of topological semimetals provide conduction channels resistant to localization.
Alexander C. Tyner   +7 more
wiley   +1 more source

Machine Learning Driven Window Blinds Inspired Porous Carbon‐Based Flake for Ultra‐Broadband Electromagnetic Wave Absorption

open access: yesAdvanced Science, EarlyView.
Inspired by the regulation mechanism of window blinds, this study designs an electromagnetic wave‐absorbing metamaterial. By introducing the magneto‐electric coupling concept and integrating it with an artificial intelligence‐based data‐driven collaborative optimization strategy, the material optimizes impedance matching performance and enhances loss ...
Zhe Wang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy