Results 271 to 280 of about 785,707 (321)

Decellularized Extracellular Matrix Scaffolds to Engineer the Dormant Landscape of Microscopic Colorectal Cancer Liver Metastasis

open access: yesAdvanced Healthcare Materials, EarlyView.
Decellularized liver extracellular matrix scaffolds provide a platform to study dormant liver‐metastatic colorectal cancer. They induce reversible dormancy, in combination with nutrient depletion and low dose chemotherapy, through cell cycle arrest and chemotherapy resistance.
Sabrina N. VandenHeuvel   +13 more
wiley   +1 more source

Ultrasound‐Triggered Gelation for Restoring Biomechanical Properties of Degenerated Functional Spinal Units

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans   +11 more
wiley   +1 more source

Bioprinting Organs—Science or Fiction?—A Review From Students to Students

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu   +18 more
wiley   +1 more source

ROS‐Triggered Microgels for Programmable Drug Release in Volumetric Muscle Loss Repair

open access: yesAdvanced Healthcare Materials, EarlyView.
Reduced graphene oxide‐incorporated hyaluronic acid microgels are developed as ROS‐responsive, injectable platforms for curcumin delivery in volumetric muscle loss. The microgels exhibit strong antioxidative activity, high drug‐loading capacity, and ROS‐triggered release.
Seungjun Lee   +5 more
wiley   +1 more source

Synthetic Hydrogels Incorporating Hydrolytic/Nonhydrolytic Macromer Ratios Exhibit Improved Tunability of In Vivo Degradation and Immune Responses

open access: yesAdvanced Healthcare Materials, EarlyView.
A synthetic 4‐arm maleimide‐terminated poly(ethylene glycol) (PEG‐4MAL) hydrogel system that combines hydrolytic ester‐linked macromer (PEG‐4eMAL) with nondegradable amide‐linked macromer (PEG‐4aMAL) in various stoichiometric ratios to tune the degradability rate. The macromers are crosslinked with dithiothreitol via thiol‐maleimide click reaction. The
Michael D. Hunckler   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy