Results 81 to 90 of about 542,997 (336)
Fuzzy differential equation with nonlocal conditions and fuzzy semigroup
In this work, we use the fuzzy strongly continuous semigroup theory to prove the existence, uniqueness, and some properties of solutions of fuzzy differential equations with nonlocal conditions.
S. Melliani, Elhassan Eljaoui, L. Chadli
semanticscholar +1 more source
Schauder’s fixed-point theorem in approximate controllability problems
The main objective of this article is to present the state of the art concerning approximate controllability of dynamic systems in infinite-dimensional spaces.
Babiarz Artur +2 more
doaj +1 more source
In this paper we consider one class of spectral problems for a nonlocal ordinary differential operator (with involution in the main part) with nonlocal boundary conditions of periodic type.
G. Dildabek +2 more
doaj +1 more source
Reductions for Some Ordinary Differential Equations Through Nonlocal Symmetries
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Gandarias, M. L., Bruzón, M. S.
openaire +1 more source
Strain Engineering of Magnetoresistance and Magnetic Anisotropy in CrSBr
Biaxial compressive strain significantly enhances magnetoresistance and critical saturation fields in thin flakes of the 2D magnet CrSBr, along all three crystallographic axes. First‐principles calculations link these effects to strain‐induced increases in exchange interactions and magnetic anisotropy.
Eudomar Henríquez‐Guerra +19 more
wiley +1 more source
Spin‐Split Edge States in Metal‐Supported Graphene Nanoislands Obtained by CVD
Combining STM measurements and ab‐initio calculations, we show that zig‐zag edges in graphene nanoislands grown on Ni(111) by CVD retrieve their spin‐polarized edge states after intercalation of a few monolayers of Au. ABSTRACT Spin‐split states localized on zigzag edges have been predicted for different free‐standing graphene nanostructures.
Michele Gastaldo +6 more
wiley +1 more source
Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model.
Y. B. Wang, X. W. Zhu, H. H. Dai
doaj +1 more source
This paper considers nonlinear fractional mixed Volterra-Fredholm integro-differential equation with a nonlocal initial condition. We propose a fixed-point approach to investigate the existence, uniqueness, and Hyers-Ulam-Rassias stability of solutions ...
Somia Khaldi +2 more
doaj +1 more source
Nonlocal diffusion second order partial differential equations
The paper deals with the second order integro-differential equation \[ u_{tt}=c u_t+bu(t,\xi)+u(t,\xi)\int_\Omega k(\xi,\eta)u(t,\eta)d\eta +h(t,u(t,\xi)), \] where \(\Omega\subset\mathbb{R}^n,\) \(n\geq2,\) is a \(C^1\)-smooth and bounded domain, \(b\) and \(c\) are constants and \(k: \Omega\times \Omega\to\mathbb{R},\) \(h: [0,T]\times\mathbb{R}\to ...
Benedetti, Irene +3 more
openaire +3 more sources
It is known that V.A. Ilyin and E.I. Moiseev studied generalized nonlocal boundary value problems for the Sturm-Liouville equation, the nonlocal boundary conditions specified at the interior points of the interval under consideration. For such problems,
С.З. Джамалов +1 more
doaj +1 more source

