Results 21 to 30 of about 32,711 (308)
Weighted Nonnegative Matrix Factorization for Image Inpainting and Clustering
Conventional nonnegative matrix factorization and its variants cannot separate the noise data space into a clean space and learn an effective low-dimensional subspace from Salt and Pepper noise or Contiguous Occlusion.
Xiangguang Dai +3 more
doaj +1 more source
Non-negative Matrix Factorization for Dimensionality Reduction [PDF]
—What matrix factorization methods do is reduce the dimensionality of the data without losing any important information. In this work, we present the Non-negative Matrix Factorization (NMF) method, focusing on its advantages concerning other methods of ...
Olaya Jbari, Otman Chakkor
doaj +1 more source
Using underapproximations for sparse nonnegative matrix factorization [PDF]
Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications.
GILLIS, Nicolas, GLINEUR, François
core +6 more sources
Quantized nonnegative matrix factorization [PDF]
Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of
openaire +6 more sources
Continuous Semi-Supervised Nonnegative Matrix Factorization
Nonnegative matrix factorization can be used to automatically detect topics within a corpus in an unsupervised fashion. The technique amounts to an approximation of a nonnegative matrix as the product of two nonnegative matrices of lower rank. In certain
Michael R. Lindstrom +4 more
doaj +1 more source
Uncovering community structures with initialized Bayesian nonnegative matrix factorization. [PDF]
Uncovering community structures is important for understanding networks. Currently, several nonnegative matrix factorization algorithms have been proposed for discovering community structure in complex networks.
Xianchao Tang +3 more
doaj +1 more source
Boolean Matrix Factorization via Nonnegative Auxiliary Optimization
A novel approach to Boolean matrix factorization (BMF) is presented. Instead of solving the BMF problem directly, this approach solves a nonnegative optimization problem with an additional constraint over an auxiliary matrix whose Boolean structure is ...
Duc P. Truong +3 more
doaj +1 more source
Guided Semi-Supervised Non-Negative Matrix Factorization
Classification and topic modeling are popular techniques in machine learning that extract information from large-scale datasets. By incorporating a priori information such as labels or important features, methods have been developed to perform ...
Pengyu Li +6 more
doaj +1 more source
A Robust Manifold Graph Regularized Nonnegative Matrix Factorization Algorithm for Cancer Gene Clustering. [PDF]
Zhu R, Liu JX, Zhang YK, Guo Y.
europepmc +3 more sources
Robust Graph Regularized Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has become a popular technique for dimensionality reduction, and been widely used in machine learning, computer vision, and data mining. Existing unsupervised NMF methods impose the intrinsic geometric constraint on
Qi Huang +3 more
doaj +1 more source

