Results 1 to 10 of about 7,704,019 (262)

Normalized solutions to nonautonomous Kirchhoff equation

open access: yesCommunications in Analysis and Mechanics, 2023
In this paper, we studied the existence of normalized solutions to the following Kirchhoff equation with a perturbation:$ \left\{ \begin{aligned} &-\left(a+b\int _{\mathbb{R}^{N}}\left | \nabla u \right|^{2} dx\right)\Delta u+\lambda u = |u|^{p-2}
Xin Qiu, Zeng Qi Ou, Ying Lv
doaj   +4 more sources

Normalized solutions for pseudo-relativistic Schrödinger equations

open access: diamondCommunications in Analysis and Mechanics
In this paper, we consider the existence and multiplicity of normalized solutions to the following pseudo-relativistic Schrödinger equations $ \begin{equation*} \left\{ \begin{array}{lll} \sqrt{-\Delta+m^2}u +\lambda u = \vartheta |u|^{p-2}v +|u|^{2 ...
Xueqi Sun, Yongqiang Fu, Sihua Liang
doaj   +3 more sources

Normalized solutions of Schrödinger equations involving Moser-Trudinger critical growth

open access: goldAdvances in Nonlinear Analysis
In this article, we are concerned with the nonlinear Schrödinger equation −Δu+λu=μ∣u∣p−2u+f(u),inR2,-\Delta u+\lambda u=\mu {| u| }^{p-2}u+f\left(u),\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{2}, having prescribed ...
Li Gui-Dong, Zhang Jianjun
doaj   +3 more sources

Quasilinear Schrödinger equations: ground state and infinitely many normalized solutions [PDF]

open access: hybridPacific J. Math. 322 (2023) 99-138, 2021
In the present paper, we study the normalized solutions for the following quasilinear Schr\"odinger equations: $$-\Delta u-u\Delta u^2+\lambda u=|u|^{p-2}u \quad \text{in}~\mathbb R^N,$$ with prescribed mass $$\int_{\mathbb R^N} u^2=a^2.$$ We first consider the mass-supercritical case $p>4+\frac{4}{N}$, which has not been studied before. By using a
Houwang Li, Wenming Zou
arxiv   +3 more sources

Normalized solutions for the p-Laplacian equation with a trapping potential

open access: yesAdvances in Nonlinear Analysis, 2023
In this article, we are concerned with normalized solutions for the pp -Laplacian equation with a trapping potential and Lr{L}^{r}-supercritical growth, where r=pr=p or 2.2.
Wang Chao, Sun Juntao
doaj   +2 more sources

Normal BGG solutions and polynomials [PDF]

open access: yesarXiv, 2012
First BGG operators are a large class of overdetermined linear differential operators intrinsically associated to a parabolic geometry on a manifold. The corresponding equations include those controlling infinitesimal automorphisms, higher symmetries, and many other widely studied PDE of geometric origin. The machinery of BGG sequences also singles out
A. R. Gover   +3 more
arxiv   +7 more sources

Equivalence of viscosity and weak solutions for the normalized $p(x)$-Laplacian [PDF]

open access: greenarXiv, 2017
We show that viscosity solutions to the normalized $p(x)$-Laplace equation coincide with distributional weak solutions to the strong $p(x)$-Laplace equation when $p$ is Lipschitz and $\inf p>1$. This yields $C^{1,\alpha}$ regularity for the viscosity solutions of the normalized $p(x)$-Laplace equation.
Jarkko Siltakoski
arxiv   +3 more sources

Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation

open access: yesAdvances in Nonlinear Analysis, 2023
In this article, we study the fractional critical Choquard equation with a nonlocal perturbation: (−Δ)su=λu+α(Iμ*∣u∣q)∣u∣q−2u+(Iμ*∣u∣2μ,s*)∣u∣2μ,s*−2u,inRN,{\left(-{\Delta })}^{s}u=\lambda u+\alpha \left({I}_{{\mu }^{* }}\hspace{-0.25em}{| u| }^{q}){| u|
Lan Jiali, He Xiaoming, Meng Yuxi
doaj   +2 more sources

Normalized solutions for a class of scalar field equations involving mixed fractional Laplacians

open access: yesAdvanced Nonlinear Studies, 2022
The purpose of this article is to establish sharp conditions for the existence of normalized solutions to a class of scalar field equations involving mixed fractional Laplacians with different orders.
Luo Tingjian, Hajaiej Hichem
doaj   +2 more sources

Existence of normalized solutions for the Schrödinger equation

open access: yesCommunications in Analysis and Mechanics, 2023
In this paper, we devote to studying the existence of normalized solutions for the following Schrödinger equation with Sobolev critical nonlinearities. $ \begin{align*} &\left\{\begin{array}{ll} -\Delta u = \lambda u+\mu\lvert u \rvert^{q-2}u+\
Shengbing Deng, Qiaoran Wu
doaj   +2 more sources

Home - About - Disclaimer - Privacy