Results 261 to 270 of about 4,877,486 (368)

First‐Principles Modeling of Solid Solution Softening and Hardening Effects in Al–Mg–Zr–Si Aluminum Alloys

open access: yesAdvanced Engineering Materials, EarlyView.
The role of various alloying elements in face‐centered cubic aluminum on the barrier of a Shockley partial dislocation during its motion is presented. The study aims to understand how alloying atoms such as Mg, Si, and Zr affect the energy landscape for dislocation motion, thus influencing the solid solution hardening and softening in aluminum, which ...
Inna Plyushchay   +3 more
wiley   +1 more source

Correction to: Artificial intelligence-based, volumetric assessment of the bone marrow metabolic activity in [<sup>18</sup>F]FDG PET/CT predicts survival in multiple myeloma. [PDF]

open access: yesEur J Nucl Med Mol Imaging
Sachpekidis C   +12 more
europepmc   +1 more source

A Simulative Approach for the Prediction of Mesoscale Residual Stress Fields in Solution‐Strengthened Ferritic Ductile Iron

open access: yesAdvanced Engineering Materials, EarlyView.
This study presents a 3D representative volume element‐based simulation approach to predict mesoscopic residual stress and strain fields in silicon solid solution‐strengthened ductile cast iron. By modeling phase transformation kinetics with an enhanced Johnson–Mehl–Avrami–Kolmogorov model, the effects of varying cooling rates on residual stresses are ...
Lutz Horbach   +6 more
wiley   +1 more source

Development of Aluminum Scandium Alloys for Hydrogen Storage Valves

open access: yesAdvanced Engineering Materials, EarlyView.
Different aluminum alloy series and various aluminum‐scandium alloys with differing Sc and Zr levels are evaluated for use in hydrogen storage valve production. The alloys undergo hardness testing, optical microscopy, and tensile strength analysis, with hardening behavior studied under varying conditions.
Francisco García‐Moreno   +4 more
wiley   +1 more source

Crystal‐Symmetry‐Driven Build Orientation and its Impact on the {110}<100> Goss Texture Formation and Mechanical Properties of Laser Powder Bed Fused AISI 316L

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores a crystal‐symmetry‐based approach to optimize mechanical properties in laser powder bed fused AISI 316L with predominant {110}<100> Goss textures. By varying the build orientation, the microstructure can be tailored and the tensile properties optimized. The tilted build (T110) achieved the highest strength while preserving ductility,
Daniel Rainer   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy