Results 221 to 230 of about 2,696,237 (374)

Evaluation of the Dual Impact of Nanotechnologies on Health and Environment Through Alternative Bridging Models

open access: yesAdvanced Healthcare Materials, EarlyView.
This review explores how alternative invertebrate and small‐vertebrate models advance the evaluation of nanomaterials across medicine and environmental science. By bridging cellular and organismal levels, these models enable integrated assessment of toxicity, biodistribution, and therapeutic performance.
Marie Celine Lefevre   +3 more
wiley   +1 more source

An In Situ Embedded B‐MOF Sponge With Shape‐Memory for All‐in‐One Diabetic Wound Therapy

open access: yesAdvanced Healthcare Materials, EarlyView.
A smart shape‐memory sponge dressing (P1A3@B‐MOF) is developed for accelerated diabetic wound healing. It achieves pH‐responsive corelease of Zn2+ and salvianolic acid B, synergistically providing antibacterial action, repolarizing macrophages to the M2 phenotype, and promoting angiogenesis.
Hai Zhou   +11 more
wiley   +1 more source

Zinc‐Containing Bioactive Glass Programs Macrophage Polarization through Extracellular Traps Regulation for Enhanced Diabetic Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
Zinc‐containing bioactive glass (ZnBG) promotes diabetic wound healing by regulating macrophage extracellular traps (METs). Specifically, ZnBG reduces oxidative stress and inhibits the PAD4 and NLRP3/caspase‐1/GSDMD signaling pathways, thereby suppressing MET formation.
RuiYang Sun   +11 more
wiley   +1 more source

Nuclear Peace and Creative Ethics

open access: yesKOREA PRESBYTERIAN JOURNAL OF THEOLOGY, 2020
openaire   +1 more source

Thermal Processing Creates Water‐Stable PEDOT:PSS Films for Bioelectronics

open access: yesAdvanced Materials, Volume 37, Issue 13, April 2, 2025.
Instead of using chemical cross–linkers, it is shown that PEDOT:PSS thin films for bioelectronics become water‐stable after a simple heat treatment. The heat treatment is compatible with a range of rigid and elastomeric substrates and films are stable in vivo for >20 days.
Siddharth Doshi   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy