Results 331 to 340 of about 1,246,840 (403)

Biointerfacing with AgBiS2 Quantum Dots for Pseudocapacitive Photostimulation

open access: yesAdvanced Functional Materials, EarlyView.
It is demonstrated that AgBiS2 quantum dots exhibit unique photoinduced pseudocapacitive charge transfer properties, enabling efficient light‐to‐electrical energy conversion. These quantum dots facilitate enhanced light absorption and transduction when integrated with ZnO nanowires, which serve as an effective charge transport medium.
Ridvan Balamur   +8 more
wiley   +1 more source

Evaluation and assessment of nuclear power plant seismic methodology

open access: bronze, 1977
D.L. Bernreuter   +5 more
openalex   +2 more sources

Improving the Capacity Retention of Poly(vinylphenothiazine) as Battery Electrode Material by Pore Size Engineering of Porous N‐Doped Carbon Nanospheres as Conductive Additive

open access: yesAdvanced Functional Materials, EarlyView.
By using (meso)porous N‐doped carbon nanospheres with tailored intraparticle porosity and constant particle size as conductive carbon in PVMPT‐based organic battery electrodes, the complete volume of the carbon is accessible for the immobilization of PVMPT, resulting in high accessible specific capacities while maintaining a good rate capability and ...
Niklas Ortlieb   +6 more
wiley   +1 more source

Heat Conduction Modulation in Incommensurate Twisted Stacking of Transition‐Metal Dichalcogenide

open access: yesAdvanced Functional Materials, EarlyView.
The interlayer thermal conductance in twisted bilayer TMDs is initially investigated experimentally by the thermoreflectance method. The overlap of lattice vibrations within individual layers and the interlayer interactions, as elucidated through both Raman spectroscopy and molecular dynamics simulations, are demonstrated to be critical factors in ...
Bin Xu   +6 more
wiley   +1 more source

Artificial Modulation of the Hydrogen Evolution Reaction Kinetics via Control of Grain Boundaries Density in Mo2C Through Laser Processing

open access: yesAdvanced Functional Materials, EarlyView.
A laser‐driven strategy enables precise microstructural modulation of Mo₂C, achieving nanoscale grain control (15.6 ± 5 nm) and an ultrahigh grain boundary density (130 µm−1). Moreover, high‐angle grain boundaries enhance active sites, facilitate electron transport, and optimize hydrogen adsorption kinetics, significantly reducing overpotential.
Seok‐Ki Hyeong   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy