Results 261 to 270 of about 416,600 (294)

Electrochemically Driven Tandem In‐Plane Reduction and FeCl3‐ Intercalation of Highly Crystalline Graphene Oxide Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a green processing route for high‐performance reduced graphene oxide (rGO) transparent conductive films (TCFs) using highly crystalline Brodie's GO. In‐plane electrochemical reduction forms rGO on insulating substrates without toxic reductants or heat. Subsequent FeCl₃ intercalation enhances conductivity, overcoming the transparency–
Tatsuki Tsugawa   +6 more
wiley   +1 more source

Lysosomal damage is a therapeutic target in Duchenne muscular dystrophy. [PDF]

open access: yesSci Adv
Jaber A   +21 more
europepmc   +1 more source

High‐Density Boron Nitride Nanotube Composites via Surfactant‐Stabilized Lyotropic Liquid Crystals for Enhanced Space Radiation Shielding

open access: yesAdvanced Functional Materials, EarlyView.
High‐density BNNT films, enabling mechanical robustness and high space radiation shielding effectiveness, are fabricated using surfactant‐stabilized BNNT liquid crystal. Simulations indicate that a 50 g cm−2 BNNT film can reduce radiation exposure by 56% compared to zero shielding, potentially doubling the duration of astronaut missions on the lunar ...
Young‐Kyeong Kim   +17 more
wiley   +1 more source

Molecularly Tailored Elastomeric Block‐Copolymers for Intrinsically Stretchable Organic Field‐Effect Transistors

open access: yesAdvanced Functional Materials, EarlyView.
Molecular‐level engineering of SEBS elastomers is introduced for skin‐inspired electronics. By systematically modulating the S/EB molar ratio in SEBS, precise control is achieved over nanoscale morphology, mechanical properties, metal‐elastomer adhesion, and dielectric performance.
Min Woo Jeong   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy