Results 21 to 30 of about 456,012 (313)
Polynomials and Numerical Ranges [PDF]
Let A A be an n × n n \times n complex matrix. For 1 ≤ k ≤ n 1 \leq k \leq n we study the inclusion relation for the following polynomial sets related to the matrix A A . (a) The classical numerical range of the k
openaire +1 more source
Some results on Drazin-Dagger matrices, reciprocal matrices, and conjugate EP matrices [PDF]
In this paper, a class of matrices, namely, Drazin-dagger matrices, in which the Drazin inverse andthe Moore-Penrose inverse commute, is introduced. Also, some properties of the generalized inverses of these matrices, are investigated.
Mahdiyeh Mortezaei +1 more
doaj +1 more source
Volterra operator norms : a brief survey
In this expository article, we discuss the evaluation and estimation of the operator norms of various functions of the Volterra operator.
Ransford Thomas
doaj +1 more source
Numerical Range of Moore–Penrose Inverse Matrices
Let A be an n-by-n matrix. The numerical range of A is defined as W ( A ) = { x * A x : x ∈ C n , x * x = 1 } . The Moore–Penrose inverse A + of A is the unique matrix satisfying A A + A = A , A + A A + = A ...
Mao-Ting Chien
doaj +1 more source
On some reciprocal matrices with elliptical components of their Kippenhahn curves
By definition, reciprocal matrices are tridiagonal n-by-n matrices A with constant main diagonal and such that ai,i+1ai+1,i= 1 for i = 1, . . ., n − 1.
Jiang Muyan, Spitkovsky Ilya M.
doaj +1 more source
Generalization of numerical range of polynomial operator matrices
Suppose that is a polynomial matrix operator where for , are complex matrix and let be a complex variable. For an Hermitian matrix , we define the -numerical range of polynomial matrix of as , where .
Darawan Zrar Mohammed, Ahmed Muhammad
doaj +1 more source
Reduction of the c-numerical range to the classical numerical range
For an \(n\)-by-\(n\) complex matrix \(A\) and a real \(n\)-tuple \(c=(c_1,\dots, c_n)\), the \(c\)-numerical range \(W_c(A)\) of \(A\) is, by definition, the subset \[ \Biggl\{\sum^n_{j=1} c_j x^*_j Ax_j: x_1,\dots, x_n\text{ form an orthonormal basis of }\mathbb{C}^n\Biggr\} \] of the complex plane.
Chien, Mao-Ting, Nakazato, Hiroshi
openaire +2 more sources
Discontinuity of maximum entropy inference and quantum phase transitions
In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference
Jianxin Chen +7 more
doaj +1 more source
On the Numerical Range and Numerical Radius of the Volterra Operator
In this paper, we investigated the numerical range and the numerical radius of the classical Volterra operator on the complex space $L^2[0,1]$. In particular, we determined the numerical range, the numerical radius of real and imaginary part of the ...
L. Khadkhuu, D. Tsedenbayar
doaj +1 more source
Inverse Numerical Range and Determinantal Quartic Curves
A hyperbolic ternary form, according to the Helton–Vinnikov theorem, admits a determinantal representation of a linear symmetric matrix pencil. A kernel vector function of the linear symmetric matrix pencil is a solution to the inverse numerical range ...
Mao-Ting Chien, Hiroshi Nakazato
doaj +1 more source

