Results 151 to 160 of about 16,208 (286)

An Innovative “Tooth‐On‐Chip” Microfluidic Device Emulating the Structure and Physiology of the Dental Pulp Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
This work presents a “tooth‐on‐chip” device that mimics dental pulp tissue. By co‐culturing key cell types, it recreates vascular networks, stem cell niches, the odontoblast/dentine interface, and trigeminal innervation. This innovative platform provides a unique model of dental pulp structure and physiology, with significant potential for accelerating
Alessandro Cordiale   +6 more
wiley   +1 more source

Uniting 4D Printing and Melt Electrowriting for the Enhancement of Regenerative Small Diameter Vascular Grafts

open access: yesAdvanced Healthcare Materials, EarlyView.
A hybrid 4D printing strategy enables the fabrication of shape‐morphing, mechanically reinforced tubular constructs for vascular tissue engineering. By combining alginate‐methylcellulose hydrogels with melt electrowritten polycaprolactone fibers and protein‐based functionalization, this platform supports spatially organized co‐cultures of fibroblasts ...
Max von Witzleben   +8 more
wiley   +1 more source

MobsPy: A programming language for biochemical reaction networks. [PDF]

open access: yesPLoS Comput Biol
Cravo F, Prakash G, Függer M, Nowak T.
europepmc   +1 more source

3D Bioprinting‐Assisted Engineering of Stem Cell‐Laden Hybrid Biopatches With Distinct Geometric Patterns Considering the Mechanical Characteristics of Regular and Irregular Connective Tissues

open access: yesAdvanced Healthcare Materials, EarlyView.
A hybrid biopatch platform integrating 3D printed polymeric patterns with stem cell‐laden collagen bioinks is developed to mimic the mechanical properties of connective tissues. By tailoring geometric architectures, the constructs replicate anisotropic or isotropic mechanics, enhancing tissue‐specific regeneration.
Minjun Ahn   +6 more
wiley   +1 more source

Contact Transfer Epitaxy of Halide Perovskites

open access: yesAdvanced Materials, EarlyView.
Bringing a halide perovskite thin film (donor) into contact with a self‐assembled monolayer of oriented perovskite nanocrystals (acceptor) at elevated temperature leads to epitaxial transfer of halide perovskite from the donor to the acceptor substrate.
Hongyu Sun   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy