Results 221 to 230 of about 16,755 (243)

3D Anodic Alumina Nanoarchitectures: A Decade of Progress from Foundational Science to Functional Metamaterials

open access: yesAdvanced Materials, EarlyView.
Ordered three‐dimensional anodic aluminum oxide (3D‐AAO) nanoarchitectures with longitudinal and transverse pores enable architecture‐driven metamaterials. The review maps fabrication advances, including hybrid pulse anodization, and shows how 3D‐AAO templates tailor properties across magnetism, energy, catalysis, and sensing.
Marisol Martín‐González
wiley   +1 more source

Sustainable software development in science - insights from 20 years of Vanted. [PDF]

open access: yesJ Integr Bioinform
Schreiber F   +7 more
europepmc   +1 more source

Autonomous Hydrogel Actuators Programmed by Endogenous Biochemical Logic for Dual‐Stage Morphing and Drug Release

open access: yesAdvanced Materials, EarlyView.
A 3D‐printed BSA–PEGDA bilayer actuator performs biochemical logic, bending autonomously in acid and releasing its drug payload only when both acid and pepsin are present. This dual‐stage, enzyme‐gated mechanism enables autonomous catch‐and‐release motion and controlled gastric drug delivery, representing a programmable soft material powered by ...
Yuchen Liu   +3 more
wiley   +1 more source

<i>MUMOTT</i>: a Python package for the analysis of multi-modal tensor tomography data. [PDF]

open access: yesJ Appl Crystallogr
Nielsen LC   +6 more
europepmc   +1 more source

Ferroelectrics Hybrids: Harnessing Multifunctionality of 2D Semiconductors in the Post‐Moore Era

open access: yesAdvanced Materials, EarlyView.
In this Review, the state of art of ferroelectric hybrid systems—combining ferroelectrics, 2D semiconductors, and molecular switches is presented—as next‐generation platforms for high‐density, multifunctional electronics. By discussing 2D FeFET applications, nanoscale material downscaling, M3D integration, and emerging ferroelectrics, it highlights ...
Haixin Qiu   +3 more
wiley   +1 more source

Electrically Tunable Friction: From Sticky to Slippery with Ionic Hydrogels

open access: yesAdvanced Materials, EarlyView.
This work demonstrates electrically tunable friction “from sticky to slippery” using ionic hydrogels, achieving reversible more‐than‐fifty‐fold modulation without liquid lubricants. An electric field extracts a salt‐rich interfacial layer that dramatically reduces friction.
Chenxu Liu   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy