Results 151 to 160 of about 1,896,726 (260)

POM‐Based Water Splitting Catalyst Under Acid Conditions Driven by Its Assembly on Carbon Nanotubes

open access: yesAdvanced Materials, EarlyView.
A newly‐engineered POM‐based electrocatalyst incorporating non‐innocent counter cations exhibits fast kinetics for either the OER or HER under strongly acidic conditions (1 m H2SO4), depending on whether it is assembled on carbon nanotubes (1@CNT) or physically mixed with them (1/CNT). In water‐splitting tests using a two‐electrode setup, these systems
Eugenia P. Quirós‐Díez   +8 more
wiley   +1 more source

Tailored Redox‐Active Catholytes Enabling High‐Rate and High‐Loading All‐Solid‐State Lithium‐Sulfur Batteries

open access: yesAdvanced Materials, EarlyView.
This study explores iodine substitution in solid electrolytes to overcome sluggish redox kinetics and poor charge transport in all‐solid‐state Li‐S batteries. The resulting iodine‐rich, amorphous phase and superionic, nanocrystalline domains enable effective redox mediation and provide a robust ionic percolation network.
Jingui Yang   +8 more
wiley   +1 more source

Recent Advances in Collective Behaviors of Micro/Nanomotor Swarms

open access: yesAdvanced Materials, EarlyView.
This review describes the driving forces behind collective motion, explores the self‐organization of micro/nano swarms across zero‐dimensional (0D), one‐dimensional (1D), two‐dimensional (2D), and three‐dimensional (3D) spaces, and highlights their potential in drug delivery, environmental monitoring, and smart devices.
Siwen Sun   +4 more
wiley   +1 more source

Correlated Dual‐Gradient Electrodes Enabling Spatially Synchronized Sulfur Redox in High‐Mass‐Loading Li–S Batteries Under High Current Densities

open access: yesAdvanced Materials, EarlyView.
Coupling a dual‐gradient carbonized framework with Fe2O3/Fe‐N‐C catalytic sites enables spatially synchronized sulfur redox across the entire electrode thickness in high‐mass‐loading Li–S batteries. This synergistic structural–catalytic design effectively mitigates concentration, ohmic, and electrochemical polarization, thereby achieving high‐capacity ...
Yuxuan Zhang   +6 more
wiley   +1 more source

Engineering Bilayer Tandem Catalysts on Si‐Based Photocathodes for High‐performance CO2 Reduction to Produce Methane

open access: yesAdvanced Materials, EarlyView.
A Cu/Ag‐Cu bilayer tandem catalyst is designed for a pyramid‐structured p‐Si photocathode, creating multiple and functionally distinct interfaces tailored to specific reaction steps and intermediate stabilization. This Cu/Ag‐Cu‐decorated p‐Si photocathode exhibits both high photocurrent and good selectivity for photoelectrochemical CO2 reduction to CH4.
Hao Wu   +14 more
wiley   +1 more source

Integrated Lead/Iodine Management for Sustainable Perovskite Solar Modules

open access: yesAdvanced Materials, EarlyView.
Perovskite solar modules face environmental risks from lead and iodine leakage. A dual‐function adsorbent—porphyrin‐modified whitlockite nanocomposites—effectively captures iodine and Pb2+, even under severe damage. Combined with a semi‐closed recycling process, it recovers 96.9% high‐purity PbI2 and reduces residual Pb2+ to <10 ppb, offering an ...
Guo‐Bin Xiao   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy