Results 121 to 130 of about 11,347 (297)

Strong Proton‐Phonon Coupling Drives Fast Ion Transport in Perovskites

open access: yesAdvanced Science, EarlyView.
Experimental and computational phonon analysis of ABO3‐type proton conductor BaSnO3 shows that substitution on the B‐site with yttrium forms an imaginary phonon mode which is instrumental for the function as proton conductor. This overcompensates the adverse proton trapping effect of the yttrium.
Alexey Rulev   +8 more
wiley   +1 more source

Precise Regulation of Membrane Proteins: From Physical Technology to Biomolecular Strategy

open access: yesAdvanced Science, EarlyView.
This review summarizes the emerging strategies for the precise regulation of membrane proteins using physical stimuli and biomolecule‐based tools. These methods provide new insights into cell regulation and offer promising directions for future disease treatment.
Xiu Zhao   +6 more
wiley   +1 more source

Exclusive Se‐O Coordination and Fe‐doping Complementation: A Catalytic Strategy for Enhanced Sulfur Redox in Li‐S Batteries

open access: yesAdvanced Science, EarlyView.
Exclusive Se‐O coordination and Fe‐doping complementation significantly improve conductivity and modulate the d‐band centers, which strongly anchor polysulfides in bidirectional catalysis and reduce the energy barriers for the Li2S nucleation and dissociation, achieving high‐apacity retention, exceptional rate capability, and stable cycling capability.
Zhao Yang   +6 more
wiley   +1 more source

An Advanced High‐Performance Ultrafast Ammonium‐Ion Aqueous Battery Based on Dual‐Metal Redox Open Framework Molecular Magnet

open access: yesAdvanced Science, EarlyView.
The Prussian Blue Analogue molecular magnet KMnFeHCF is demonstrated as a high‐performance cathode for ultra‐fast aqueous ammonium‐ion batteries. A full cell using KMnFeHCF and graphite delivers ~71 mAh g−1 at 1.25 A g−1 and ~51 mAh g−1 at 2.2 A g−1, retaining 50% capacity after 1850 cycles. Its scalability, cycling stability, and low cost offer strong
Nilasha Maiti   +5 more
wiley   +1 more source

Niδ+ Atoms Anchored In Situ on Ultrathin Ni‐Phyllosilicate Nanosheet Ensure High‐Efficient CO2 Reduction into CO at Moderate‐Low Temperature

open access: yesAdvanced Science, EarlyView.
A novel supported Ni‐based catalyst, consisting of abundant Niδ+ atoms with low electron density anchored in situ on ultrathin Ni‐phyllosilicate nanosheet (a‐Niδ+−PSNS, 0< δ ≤1), achieve simultaneous outstanding CO2 conversion and CO selectivity. Their ultrathin nanosheet enables abundant anchored Niδ+ atoms to fully expose and disperse, which can ...
Ziluo Ding   +10 more
wiley   +1 more source

Mitigating the Rock‐Salt Phase Transformation in Disordered LNMO Through Synergetic Solid‐State AlF3/LiF Modifications

open access: yesAdvanced Science, EarlyView.
The transition between the spinel and rock‐salt phases induces irreversible structural changes in disordered LiNi0.5Mn1.5O4, thereby preventing it from fully releasing its electrochemical capacity during charge/discharge cycling. Abstract High‐voltage disordered spinel LiNi0.5Mn1.5O4 is a promising cathode material for high power density in lithium‐ion
Xingqi Chang   +9 more
wiley   +1 more source

Visualizing Strain‐Coupled Cryogenic Phase Transitions and Defect Dynamics in Perovskite Quantum Dots Using In Situ STEM

open access: yesAdvanced Science, EarlyView.
Cryogenic cooling induces an orthorhombic‐to‐monoclinic phase transition in CsPbBr3 quantum dots, accompanied by pronounced strain localization at surfaces and interfaces. Multimodal in situ STEM directly visualize reversible defect healing during moderate cryogenic treatment and irreversible degradation upon prolonged exposure, revealing the intrinsic
Xinjuan Li   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy