Results 301 to 310 of about 581,965 (380)

FOXQ1 Regulates Brain Endothelial Mitochondrial Function by Orchestrating Calcium Signaling and Cristae Morphology

open access: yesAdvanced Science, EarlyView.
FOXQ1 emerges as a master transcriptional regulator of brain endothelial metabolism, orchestrating mitochondrial function through dual control of calcium signaling and cristae organization. This study reveals that brain endothelial cells rely on oxidative phosphorylation rather than glycolysis alone, challenging the current metabolic paradigm and ...
Wenzheng Zou   +8 more
wiley   +1 more source

Digital evolution: Novo Nordisk's shift to ontology-based data management. [PDF]

open access: yesJ Biomed Semantics
Tan SZK   +11 more
europepmc   +1 more source

A Study on the Cell Layer Patterns of a Citrus Periclinal Chimera Reveals β‐Cryptoxanthin Regulation in Citrus Fruits

open access: yesAdvanced Science, EarlyView.
Researchers have identified a citrus chimera with distinctive tissue origins and carotenoid profiles. It is discovered that fruit tissues develop from all three cell layers but in different proportions. A key transcription factor, MYB107, regulates β‐cryptoxanthin production by directly activating carotenoid biosynthesis genes, explaining why some ...
Chi Zhang   +8 more
wiley   +1 more source

Discovery of a Potent and Selective TEAD Degrader with Durable Degradation Activity

open access: yesAdvanced Science, EarlyView.
KG‐FP‐003, a highly potent TEAD‐YAP PROTAC derived from the patented inhibitor is developed. It selectively degrades endogenous TEAD proteins in HiBiT systems without IMiD‐related off‐target effects. Screening across 867 cancer cell lines revealed broad and superior anti‐tumor activity, highlighting its therapeutic potential through targeted TEAD ...
Linhui Cao   +25 more
wiley   +1 more source

Deacetylation of ACLY Mediates RNA M6A‐Modification of NOXA and Promotes Chemoresistance of Colorectal Cancer

open access: yesAdvanced Science, EarlyView.
This study investigates the deacetylation of ACLY at K978 acts as a novel risk in colorectal cancer chemoresistance. The deacetylation of K978 induces ACLY relocation to the nucleus and promotes its binding to RBM15, a m6A methylation modification “writer”.
Jun Wen   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy