Results 281 to 290 of about 718,181 (329)

Naturally Derived Donor‐π‐Acceptor Compounds for Efficient Long‐Wavelength LEDs/Sunlight‐Induced Polymerization and High‐Precision Multiple 3D Printing

open access: yesAdvanced Functional Materials, EarlyView.
Two novel donor–π–acceptor photoinitiators enable ultrafast long‐wavelength photopolymerization under blue/green LEDs and sunlight. Effective at low intensities and concentrations, they overcome slow kinetics and permit rapid 3D printing via DLW, DLP, and LCD methods.
Ji Feng   +9 more
wiley   +1 more source

Strongest constraint on the parastatistical Quon model with the VIP-2 measurements. [PDF]

open access: yesSci Rep
Porcelli A   +20 more
europepmc   +1 more source

High‐Yield Synthesis of Fe‐NC Electrocatalysts Using Mg2+ Templating and Schiff‐Base Porous Organic Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange   +11 more
wiley   +1 more source

Roll‐to‐Roll Mechanical Exfoliation for Large‐Area van der Waals Films with Preserved Crystallographic Alignment

open access: yesAdvanced Functional Materials, EarlyView.
A roll‐to‐roll exfoliation method is demonstrated that preserves the crystallographic alignment of anisotropic 2D materials over large areas, enabling scalable fabrication of directional electronic and optoelectronic devices. Abstract Anisotropic 2D materials such as black phosphorus (BP), GeS or CrSBr, exhibit direction‐dependent optical and ...
Esteban Zamora‐Amo   +14 more
wiley   +1 more source

Gain engineering and atom lasing in a topological edge state in synthetic dimensions. [PDF]

open access: yesNat Commun
Tsuno T   +5 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy