Results 181 to 190 of about 640,184 (358)

Micro-device for coupling, multiplexing and demultiplexing using elliptical-core two-mode fiber [PDF]

open access: yes
We propose and demonstrate experimentally a fiber optic micro-device that is capable of tunably splitting, multiplexing, and demultiplexing optical signals using elliptical-core two-mode optical fiber.
Claus, R. O.   +4 more
core   +1 more source

Revealing the Auxetic Behavior of Biomimetic Multimaterial and Region‐Specific Nanofibrous Fascicle‐Inspired Scaffolds via Synchrotron Multiscale Digital Volume Correlation: Innovative Building Blocks for the Enthesis Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
Enthesis injuries are a worldwide healthcare problem. Biomimetic electrospun enthesis fascicle‐inspired scaffolds, with and without nano‐mineralization are developed. Human Mesenchymal Stromal cells (hMSCs) express the most balanced enthesis markers on the non‐mineralized scaffolds.
Alberto Sensini   +11 more
wiley   +1 more source

Biomimetic Iridescent Skin: Robust Prototissues Spontaneously Assembled from Photonic Protocells

open access: yesAdvanced Functional Materials, EarlyView.
Uniform nanoparticles are induced to form arrays (photonic crystals) in the cores of biopolymer capsules, endowing these ‘protocells’ with structural color. These protocells are then assembled into large self‐standing objects, i.e., prototissues, with robust mechanical properties as well as iridescent optical properties.
Medha Rath   +6 more
wiley   +1 more source

Integrated Metallo‐Dielectric 3D Hotspots From High Refractive Index Nanodiamond‐Plasmonic Gold Cryosoret Nano‐Assemblies for Photonic Crystal Enhanced Fluorescence

open access: yesAdvanced Functional Materials, EarlyView.
This work presents a novel sensing platform using metallo‐dielectric cryosoret nano‐assemblies and lossless photonic crystals to overcome limitations of conventional plasmonic biosensors. The hybrid system enhances both electric and magnetic field interactions, enabling amplified fluorescence, ultralow detection limits, and prism‐free, objective‐free ...
Seemesh Bhaskar   +5 more
wiley   +1 more source

Geometrically Templated, Ultra‐Lightweight and High Strength Soap Films from Lyotropic Liquid Crystalline Graphene Oxide/Polymer Composites

open access: yesAdvanced Functional Materials, EarlyView.
Shellular materials form spontaneously by dip coating the primitive triply periodic minimal surface (TPMS) wireframe in an aqueous solution of lyotropic liquid crystalline graphene oxide (GO) nanosheets mixed with polymers. Regulated by surface tension, GO nanosheets align on the polymer soap film as the stress builds up during drying.
Yinding Chi   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy