Results 281 to 290 of about 640,184 (358)

Interconnected Porous Hydrogels with Tunable Anisotropy Through Aqueous Emulsion Bioprinting

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bioprintable microporous bioink is developed using an aqueous two‐phase system (ATPS) composed of extracellular matrix (ECM) mimetic biopolymers. The ATPS bioink enables the fabrication of interconnected porous architectures with up to 70% porosity, supporting long‐term cell viability and 3D cell alignment, enabling a simultaneous generation of ...
Hugo Edgar‐Vilar   +4 more
wiley   +1 more source

Shape‐Morphing Nanoengineered Hydrogel Ribbons as Hemostats

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a self‐assembling, shape‐morphing nanoengineered hydrogel ribbon system that rapidly forms porous aggregates in situ for efficient hemostasis in trauma and surgical applications. Abstract Rapid and effective hemorrhage control remains a major challenge in trauma and surgical care, particularly for complex or noncompressible wounds.
Ryan Davis Jr   +9 more
wiley   +1 more source

Stretchable p/n‐Pair Thermoelectric Fibers Based on Core (Ag)–Shell (Ag2Se) Structure for Wearable Electronics

open access: yesAdvanced Functional Materials, EarlyView.
Stretchable p/n‐pair Ag@Ag2Se TE fibers are developed for next‐generation fiber‐based electronics. The TE fibers maintain excellent electrical conductivity and a high Seebeck coefficient under strain. Integrated into textiles, they enable simultaneous temperature and strain sensing, as well as energy harvesting, offering great potential for ...
Chaebeen Kwon   +6 more
wiley   +1 more source

Is seeing believing?-signal differentiation in a preclinical transbronchial imaging study implementing a composite optical fiber bronchoscope to detect a folate receptor-targeted near-infrared fluorophore. [PDF]

open access: yesTransl Lung Cancer Res
Hiraishi Y   +15 more
europepmc   +1 more source

Electrochemically Driven Dissipative Growth of Affinity Hydrogels for Bioresponsive Interfaces

open access: yesAdvanced Functional Materials, EarlyView.
Voltage pulses drive the growth and reinforcement of hydrogel films under dissipative conditions. This biocompatible strategy enables efficient integration of affinity ligands into the hydrogel matrix, enhancing the selective capture of growth factors and allowing precise temporal control over their release, making them well‐suited as adaptive ...
Roberto Baretta, Marco Frasconi
wiley   +1 more source

Home - About - Disclaimer - Privacy