Results 171 to 180 of about 734,125 (345)
Asymmetric optical signal noise ratio in passive optical networks using Raman amplification
Norio Kashima
openalex +2 more sources
Low‐Loss Far‐Infrared Surface Phonon Polaritons in Suspended SrTiO3 Nanomembranes
The low‐loss, highly confined, and thickness‐tunable surface phonon polaritons are demonstrated in the far‐infrared regime within transferable freestanding SrTiO3 membranes, achieving high figures of merit comparable to the previous record values from the vdW materials.
Konnor Koons+8 more
wiley +1 more source
A visible light‐responsive polyacrylamide‐azobenzene hydrogel enables safe, reversible stiffness control for studying cell mechanobiology without harmful UV exposure. This approach reveals stem cells respond rapidly to mechanical changes, showing altered shape and protein distribution within one hour.
Aafreen Ansari+11 more
wiley +1 more source
Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples [PDF]
Thomas Martini Jørgensen+4 more
openalex +1 more source
Herein, a comprehensive framework that enabled the optimization of colloidal solubility within a high‐dimensional parameter space and study of reversible assembly processes is developed. This data‐driven workflow integrated innovations including the robotic platform for automated AuNPs functionalization, machine learning for predicting and revealing ...
Yueyang Gao+5 more
wiley +1 more source
A temperature or FUV tracer? The HNC/HCN ratio in M83 on the GMC scale [PDF]
The HNC/HCN ratio is observationally known as a thermometer in Galactic interstellar molecular clouds. A recent study has alternatively suggested that the HNC/HCN ratio is affected by the ultraviolet (UV) field, not by the temperature. We aim to study this ratio on the scale of giant molecular clouds in the barred spiral galaxy M83 towards the ...
arxiv
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan+9 more
wiley +1 more source
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source