Results 81 to 90 of about 141,520 (209)
Predicting Atomic Charges in MOFs by Topological Charge Equilibration
An atomic charge prediction method is presented that is able to accurately reproduce ab‐initio‐derived reference charges for a large number of metal–organic frameworks. Based on a topological charge equilibration scheme, static charges that fulfill overall neutrality are quickly generated.
Babak Farhadi Jahromi +2 more
wiley +1 more source
A transparent, laser‐microscribed glass platform enables cancer diagnosis within 1 h—much faster than histology, which takes days, and free from the chemical or contrast risks of MRI or CT scans. The antibody‐functionalized rough glass surface captures viable cancer cells directly from suspension, allowing instant optical readout and offering a rapid ...
Anish Pal +5 more
wiley +1 more source
A 3D nanowire‐network SERS substrate with robust adhesion is developed, featuring pronounced z‐direction optical activity, ultralow detection limit (1.5 × 10−13 M), and excellent signal uniformity (RSD < 10%). Enabled by enhanced light scattering, increased optical density of states, and structural reinforcement, the substrate demonstrates stable, high‐
Jinglai Duan +6 more
wiley +1 more source
Permanent magnets derive their extraordinary strength from deep, universal electronic‐structure principles that control magnetization, anisotropy, and intrinsic performance. This work uncovers those governing rules, examines modern modeling and AI‐driven discovery methods, identifies critical bottlenecks, and reveals electronic fingerprints shared ...
Prashant Singh
wiley +1 more source
Hydrocarbon membranes are a greener alternative to PFSA in PEM fuel cells, but degrade rapidly from radical attack. We present a novel strategy using poly(vinylphosphonic acid) (PVPA) as a local radical scavenger. Incorporated as an interfacial barrier, PVPA enhances chemical stability and significantly extends membrane lifetime under accelerated ...
Hendrik Sannemüller +6 more
wiley +1 more source
Materials exist that are useful for gamma scintillation, radiation shielding, neutron‐gamma pulse shape discrimination (PSD), thermal neutron detection, or high refractive index applications. While certain materials have exhibited optimal performance for each of these applications, none achieve multiple functions.
Isabelle Winardi +13 more
wiley +1 more source
Deterministic hBN Bubbles as a Versatile Platform for Studies on Single‐Photon Emitters
Single‐photon emitters (SPEs) in hBN are promising for quantum technologies; however, in exfoliated samples their activation is required, limiting reproducibility of previous studies. This work introduces a large‐area MOVPE‐grown hBN platform that hosts SPEs without prior activation.
Piotr Tatarczak +8 more
wiley +1 more source
Mapping Nanoscale Buckling in Atomically Thin Cr2Ge2Te6
Atomic‐resolution STEM is used to resolve nanoscale buckling in monolayer Cr2Ge2Te₆. A noise‐robust image analysis reconstructs three‐dimensional lattice distortions from single plan‐view images, revealing pronounced defect‐driven nm‐scale out‐of‐plane buckling.
Amy Carl +20 more
wiley +1 more source
An optimized carbon host nanostructure enables a dual‐interface‐dominant architecture in sulfur cathodes of solid‐state Li‐S batteries by selectively forming sulfur|carbon and sulfur|solid electrolyte interfaces. This tailored interfacial configuration accelerates sulfur redox kinetics by establishing enriched Li+/e– transport networks, while ...
Zhao Yang +13 more
wiley +1 more source
Applying a high electric field to a doped organic semiconductor heats up the charge carrier distribution beyond the lattice temperature, enhancing conductivity. It is shown that the associated effective temperature can be used to extract the effective localization length, which is a characteristic length scale of charge transport and provides ...
Morteza Shokrani +4 more
wiley +1 more source

