Results 221 to 230 of about 1,955,278 (308)
The rare report of unicentric Castleman disease with concurrent myasthenia gravis and paraneoplastic pemphigus: a case report with a focused review of the literature. [PDF]
Cheng Z, Liu W, Hu Y.
europepmc +1 more source
Polycarbonate nanogels enable lipid‐free delivery of anti‐MFAP‐5 siRNA into cancer‐associated fibroblasts (CAF) in hepatocellular carcinoma. In a cirrhotic murine model, this approach silences MFAP‐5, reduces fibroblast activation, and suppresses tumor growth by inhibiting NOTCH/Hes1‐driven angiogenesis. CAF‐targeted MFAP‐5 RNAi and conserved signaling
Paul Schneider +20 more
wiley +1 more source
Research trends in oral health and frailty studies: a bibliometric and visual analysis. [PDF]
Chen S +5 more
europepmc +1 more source
This study shows that lower NAM levels in PE‐derived pEVs correlate with disease severity. NAM‐deficient pEVs reduce Th1 and Th17 inhibition, leading to PE‐like symptoms. NAM in pEVs inhibits Th1 via SIRT1 and Th17 via macrophages. Reduced NAM in PE‐EVs is due to decreased HRS expression in trophoblasts, resulting from elevated HSP27.
Haiyi Fei +10 more
wiley +1 more source
Clinical Significance of an Incidentally Detected Lateral Lingual Foramen on Cone-Beam Computed Tomography (CBCT): A Case Report and Review of Pertinent Literature. [PDF]
Ramalingam S +5 more
europepmc +1 more source
Lactylation‐Driven YTHDC1 Alleviates MASLD by Suppressing PTPN22‐Mediated Dephosphorylation of NLRP3
In MASLD, YTHDC1 undergoes increased lactylation and ubiquitination, reducing its expression. AARS1 mediates lactylation at lysine 565, while disrupted binding to LDHA further promotes lactylation, suppressing YTHDC1. This downregulation enhances PTPN22 mRNA stability, leading to NLRP3 dephosphorylation and activation, which exacerbates inflammation ...
Feng Zhang +16 more
wiley +1 more source
The potential of antimicrobial peptides to treat oral infections and cancer. [PDF]
Carvalho de Paula AE +2 more
europepmc +1 more source
Alkyltriphenylphosphonium Binding to Cardiolipin Triggers Oncosis in Cancer Cells
Alkyltriphenylphosphonium, exemplified by TPP+‐C14, preferentially accumulates in mitochondria and selectively binds to cardiolipin, a key phospholipid of the inner mitochondrial membrane, causing loss of mitochondrial membrane potential, severe cellular ATP depletion, and calcium imbalance.
Jin Li +8 more
wiley +1 more source

