Results 231 to 240 of about 3,719,540 (378)

Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu   +3 more
wiley   +1 more source

Arbitrary spin-to–orbital angular momentum conversion of light

open access: yesScience, 2017
R. Devlin   +4 more
semanticscholar   +1 more source

Accelerated Discovery of High‐Performance PCFC Cathodes: Computational‐Experimental Optimization of Cobalt‐Substituted Ba0.95La0.05FeO3‐δ

open access: yesAdvanced Functional Materials, EarlyView.
An integrated computational–experimental strategy accelerates the discovery of high‐performance PCFC cathodes. Computational screening using machine learning interatomic potentials and targeted experiments identifies optimal cobalt substitution in Ba0.95La0.05FeO3‐δ, reducing area‐specific resistance by 58% at 500 °C.
Abdullah Tahir   +4 more
wiley   +1 more source

Mutual Correlation. [PDF]

open access: yesJ Chem Theory Comput
Evangelista FA.
europepmc   +1 more source

Thiol‐Modulation‐Induced Mesoporous Nanosheets with an Alloy/Intermetallic Heterophase for Efficient Electrochemical Ethylene Glycol‐Assisted Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
Sulfur‐capped mesoporous PtPbBi nanosheets (S‐PtPbBi MNSs) with an alloy/intermetallic compound heterophase and inhomogeneous tensile strain (≈3%) were synthesized by a thiol modification strategy, which exhibited excellent electrocatalytic performance for ethylene glycol oxidation reaction (EGOR).
Fukai Feng   +14 more
wiley   +1 more source

Modulating Oxide‐Based Quantum Materials by Ion Implantation

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights how ion implantation, a well developed chip‐technology, enables targeted modulation of oxide‐based quantum materials. This includes tuning of metal‐insulator transitions, magnetism, and superconductivity through selective doping, defect creation, and induced lattice strain. Abstract Ion implantation has emerged as a powerful tool
Andreas Herklotz   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy