Results 171 to 180 of about 61,131 (327)

Fabrication of organ-on-a-chip using microfluidics

open access: yesBioprinting
The use of microfluidic devices represents a significant advancement beyond conventional techniques in the development of innovative in vitro assays. Microfluidic chips are specialized devices that precisely control fluids at the microscale level through intricate microchannels, enabling the replication of physical and chemical conditions.
S. Ying-Jin   +3 more
openaire   +2 more sources

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Impact of Surface Functionalization on NV Quantum Properties: Implications for Biosensing with Fluorescent Nanodiamonds

open access: yesAdvanced Functional Materials, EarlyView.
Fluorescent nanodiamonds (fNDs) have emerged as an invaluable quantum sensing platform for biological and biochemical systems. This paper investigates the influence of common surface functionalization strategies for bioconjugation on the quantum properties of nitrogen vacancy (NV) centers in nanodiamonds.
Anja Sadžak   +6 more
wiley   +1 more source

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

Electron–Matter Interactions During Electron Beam Nanopatterning

open access: yesAdvanced Functional Materials, EarlyView.
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima   +2 more
wiley   +1 more source

Organ-on-a-chip technology

open access: yes
The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms.
Paloschi, V.   +7 more
openaire   +1 more source

MPI‐Guided Photothermal Therapy of Prostate Cancer Using Stem Cell Delivery of Magnetotheranostic Nanoflowers

open access: yesAdvanced Functional Materials, EarlyView.
Tumor‐tropic human mesenchymal stem cells (hMSCs) were used as delivery vehicles for magnetotheranostic gold–iron oxide nanoflowers. Magnetic particle imaging of the iron component demonstrated widespread intratumoral distribution and sustained retention in contrast to injection of naked nanoflowers.
Behnaz Ghaemi   +7 more
wiley   +1 more source

From In‐Silico Optimized Microfabrication to Experimental Validation: Engineering a Tridimensional Epi‐Intraneural Interface

open access: yesAdvanced Functional Materials, EarlyView.
An epi‐intraneural interface is developed through in silico optimization and a novel tridimensional microfabrication pipeline. The device integrates penetrating and epineural contacts on a flexible substrate. Mechanical, electrochemical, and in vivo testing in rat and pig reveal robust implantation, low‐threshold activation, and site‐dependent ...
Federico Ciotti   +14 more
wiley   +1 more source

Toward Scalable Solutions for Silver‐Based Gas Diffusion Electrode Fabrication for the Electrochemical Conversion of CO2 – A Perspective

open access: yesAdvanced Functional Materials, EarlyView.
In this study, the preparation techniques for silver‐based gas diffusion electrodes used for the electrochemical reduction of carbon dioxide (eCO2R) are systematically reviewed and compared with respect to their scalability. In addition, physics‐based and data‐driven modeling approaches are discussed, and a perspective is given on how modeling can aid ...
Simon Emken   +6 more
wiley   +1 more source

Liquid Crystalline Inverted Lipid Phases and Reverse Micelles in Drug Delivery: From Molecular Design to Therapeutic Potential

open access: yesAdvanced Functional Materials, EarlyView.
Liquid crystalline inverted lipid phases and reverse micelles are self‐assembled lipid nanostructures that enhance the solubility, stability, and delivery of diverse therapeutics. This review integrates their physicochemical principles, formulation strategies, drug loading mechanisms, and biomedical applications, highlighting their growing ...
Numan Eczacioglu   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy