Results 221 to 230 of about 252,870 (332)

Integrated Lead/Iodine Management for Sustainable Perovskite Solar Modules

open access: yesAdvanced Materials, EarlyView.
Perovskite solar modules face environmental risks from lead and iodine leakage. A dual‐function adsorbent—porphyrin‐modified whitlockite nanocomposites—effectively captures iodine and Pb2+, even under severe damage. Combined with a semi‐closed recycling process, it recovers 96.9% high‐purity PbI2 and reduces residual Pb2+ to <10 ppb, offering an ...
Guo‐Bin Xiao   +6 more
wiley   +1 more source

Non-Invasive Composition Identification in Organic Solar Cells via Deep Learning. [PDF]

open access: yesNanomaterials (Basel)
Chang YH   +8 more
europepmc   +1 more source

Aggregation‐Induced Emission Molecular Design for Mitigating Non‐Radiative Energy Loss in Organic Solar Cells

open access: yesAdvanced Materials, EarlyView.
Aggregation‐induced emission strategy is first used to overcome aggregation‐caused quenching in Y‐series acceptors. By integrating tetraphenylethylene, the dTPE exhibits three‐fold PLQY enhancement and significantly suppressed non‐radiative energy loss. An ultra‐low Eloss of 0.130 eV and a record VOC of 0.93 V are achieved, resulting in a PCE over 20.5%
Yingze Zhang   +18 more
wiley   +1 more source

Polarize the Solvent to Regulate the Intermediate Phase and Dynamic Crystallization of Perovskite Films

open access: yesAdvanced Materials, EarlyView.
A solvent engineering strategy using polar polymers is introduced to regulate perovskite crystallization dynamics in solar cells. Strongly polarized fluorinated groups stabilize the intermediate phase and control solvent exfoliation, leading to high‐quality films with suppressed defects.
Zhuoqiong Zhang   +14 more
wiley   +1 more source

Guidelines for Material Design in Semitransparent Organic Solar Cells [PDF]

open access: hybrid
Karen Forberich   +5 more
openalex   +1 more source

Dynamic Optical Lattices Through Conducting Polymer‐Gated Confinement

open access: yesAdvanced Materials, EarlyView.
The conducting polymer gate is incorporated into organic dielectric lattices to control the dynamic switching of nonlocal Mie resonances in the visible/NIR regions. The “closed gate” from oxidized PEDOT confines the light within dielectric nanocylinders and activates nonlocal Mie resonances, while the “opened gate” from reduced PEDOT facilitates ...
Dongqing Lin   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy