Results 151 to 160 of about 4,421,314 (333)

Poly(1,4‐anthraquinone) as an Organic Electrode Material: Interplay of the Electronic and Structural Properties due to the Unusual Lone‐Pair‐π Conjugation

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
In this study, the unique role of the unusual lone‐pair‐π conjugation mechanism in poly(1,4‐anthraquinone) (P14AQ) is explored as an organic electrode material. Unlike traditional π‐π interactions, P14AQ's conjugation involves lone pairs of oxygen atoms interacting with the π cloud of adjacent units, enabling stable charge transport even with minimal π‐
Xiaotong Zhang, Piotr de Silva
wiley   +1 more source

Exploring Dipolar Dynamics and Ionic Transport in Metal‐Organic Frameworks: Experimental and Theoretical Insights

open access: yesAdvanced Functional Materials, EarlyView.
In this study, the interplay of dipolar dynamics and ionic charge transport in MOF compounds is investigated. Synthesizing the novel structure CFA‐25 with integrated freely rotating dipolar groups, local and macroscopic effects, including interactions with Cs cations are explored.
Ralph Freund   +6 more
wiley   +1 more source

Disruption of Magnetic Compass Orientation in Migratory Birds by Radiofrequency Electromagnetic Fields [PDF]

open access: bronze, 2017
Hamish G. Hiscock   +3 more
openalex   +1 more source

Deciphering the Origin of Higher Shell Coordination on Single Iron Catalysts for Resilient Modulating Persulfate Oxidation Into Singlet Oxygen Pathway

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
This study reveals that higher shell S coordination can effectively modulate the spin state of FeN4 site via long‐range electronic interactions, giving rise to the oriented generation of singlet oxygen from peroxymonosulfate activation. Abstract Precise manipulation of coordination structure of single‐atom sites and establishment of schematic ...
Liang Zhang   +8 more
wiley   +1 more source

Achieving Large and Anisotropic Spin‐Mediated Thermal Transport in Textured Quantum Magnets

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced solvent‐cast cold pressing method is developed to synthesize highly textured quantum magnets. By aligning spin chains in Ca2CuO3 perpendicular to the pressing direction, a spin‐mediated thermal conductivity of 10 ± 1 W m⁻¹ K⁻¹ is achieved, the highest reported for polycrystalline quantum materials.
Shucheng Guo   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy