Results 111 to 120 of about 2,987,022 (341)

Ribozyme Activity of RNA Nonenzymatically Polymerized from 3′,5′-Cyclic GMP

open access: yesEntropy, 2013
3′,5′-Cyclic GMP spontaneously nonenzymatically polymerizes in a base-catalyzed reaction affording G oligonucleotides. When reacted with fully or partially sequence-complementary RNA (oligo C), the abiotically generated oligo G RNA displays a typical ...
Samanta Pino   +5 more
doaj   +1 more source

Structural insights into lacto‐N‐biose I recognition by a family 32 carbohydrate‐binding module from Bifidobacterium bifidum

open access: yesFEBS Letters, EarlyView.
Bifidobacterium bifidum establishes symbiosis with infants by metabolizing lacto‐N‐biose I (LNB) from human milk oligosaccharides (HMOs). The extracellular multidomain enzyme LnbB drives this process, releasing LNB via its catalytic glycoside hydrolase family 20 (GH20) lacto‐N‐biosidase domain.
Xinzhe Zhang   +5 more
wiley   +1 more source

Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology [PDF]

open access: yes, 2018
Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system.
Dikshit, Biswaranjan
core  

The Caenorhabditis elegans DPF‐3 and human DPP4 have tripeptidyl peptidase activity

open access: yesFEBS Letters, EarlyView.
The dipeptidyl peptidase IV (DPPIV) family comprises serine proteases classically defined by their ability to remove dipeptides from the N‐termini of substrates, a feature that gave the family its name. Here, we report the discovery of a previously unrecognized tripeptidyl peptidase activity in DPPIV family members from two different species.
Aditya Trivedi, Rajani Kanth Gudipati
wiley   +1 more source

Molecular bases of circadian magnesium rhythms across eukaryotes

open access: yesFEBS Letters, EarlyView.
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley   +1 more source

Crosstalk between the ribosome quality control‐associated E3 ubiquitin ligases LTN1 and RNF10

open access: yesFEBS Letters, EarlyView.
Loss of the E3 ligase LTN1, the ubiquitin‐like modifier UFM1, or the deubiquitinating enzyme UFSP2 disrupts endoplasmic reticulum–ribosome quality control (ER‐RQC), a pathway that removes stalled ribosomes and faulty proteins. This disruption may trigger a compensatory response to ER‐RQC defects, including increased expression of the E3 ligase RNF10 ...
Yuxi Huang   +8 more
wiley   +1 more source

Parent-of-origin effects in the life-course evolution of cardio-metabolic traits [PDF]

open access: green, 2021
Rucha Wagh   +3 more
openalex   +1 more source

Peptide‐based ligand antagonists block a Vibrio cholerae adhesin

open access: yesFEBS Letters, EarlyView.
The structure of a peptide‐binding domain of the Vibrio cholerae adhesin FrhA was solved by X‐ray crystallography, revealing how the inhibitory peptide AGYTD binds tightly at its Ca2+‐coordinated pocket. Structure‐guided design incorporating D‐amino acids enhanced binding affinity, providing a foundation for developing anti‐adhesion therapeutics ...
Mingyu Wang   +9 more
wiley   +1 more source

Origins of Life

open access: yesSciential - McMaster Undergraduate Science Journal, 2020
When, where, and how did life on Earth originate? The origin of life problem involves multiple scientific disciplines and has spanned multiple decades. It can be summarized into three stages: (1) the origin of biological monomers, (2) the origin of biological polymers, and (3) the emergence and evolution of cells.
openaire   +2 more sources

Home - About - Disclaimer - Privacy