Results 41 to 50 of about 6,795 (190)

Triple Solutions for Nonlinear (μ1(·), μ2(·))—Laplacian–Schrödinger–Kirchhoff Type Equations

open access: yesJournal of Function Spaces, Volume 2026, Issue 1, 2026.
In this manuscript, we study a (μ1(·), μ2(·))—Laplacian–Schrödinger–Kirchhoff equation involving a continuous positive potential that satisfies del Pino–Felmer type conditions: K1∫ℝN11/μ1z∇ψμ1z dz+∫ℝN/μ1zVzψμ1z dz−Δμ1·ψ+Vzψμ1z−2ψ+K2∫ℝN11/μ2z∇ψμ2z dz+∫ℝN/μ2zVzψμ2z dz−Δμ2·ψ+Vzψμ2z−2ψ=ξ1θ1z,ψ+ξ2θ2z,ψ inℝN, where K1 and K2 are Kirchhoff functions, Vz is a ...
Ahmed AHMED   +3 more
wiley   +1 more source

EKSTRAKSI RUANG ORLICZ [PDF]

open access: yes, 2014
Ruang Orlicz ( ) telah diperkenalkan oleh Z.W. Birnbaum dan W. Orlicz pada sekitar tahun 1931. Ruang Orlicz merupakan salah satu contoh ruang Banach yang dikatakan sebagai perluasan dari ruang , . Rao dan Ren [4] mengembangkan teori ruang Orlicz pada
Al Hazmy, Sofihara
core  

Multiplicativity Factors for Orlicz Space Function Norms

open access: yesJournal of Mathematical Analysis and Applications, 1993
Let \(\varphi\) be a Young function on \([0, \infty)\), \((T, \Omega, m)\) be a measure space, and \(L^ \varphi = L^ \varphi (T, \Omega, m)\) be an Orlicz space equipped with the Luxemburg norm \(\rho_ \varphi\) (so that \(L^ \infty \equiv L^ \varphi\) for \(\varphi (s) = \{{0, \atop \infty,} {s \in [0,1]; \atop s > 1.})\). Put \(m_{\inf} = \inf \{m(A)
Arens, Richard   +2 more
openaire   +3 more sources

Matrix Freedman Inequality for Sub‐Weibull Martingales

open access: yesStat, Volume 14, Issue 4, December 2025.
ABSTRACT In this paper, we establish a matrix Freedman inequality for martingales with sub‐Weibull tails. Under conditional ψα$$ {\psi}_{\alpha } $$ control of the increments, the top eigenvalue admits a non‐asymptotic tail bound with explicit, dimension‐aware constants.
Íñigo Torres
wiley   +1 more source

A Note on the Limit of Orlicz Norms

open access: yesReal Analysis Exchange, 2023
We generalize the well-known inequality that the limit of the $L^p$ norm of a function as $p\rightarrow\infty$ is the $L^\infty$ norm to the scale of Orlicz spaces.
Cruz-Uribe, David, Scott, Rodney
openaire   +2 more sources

Multiplicity results for logarithmic double phase problems via Morse theory

open access: yesBulletin of the London Mathematical Society, Volume 57, Issue 12, Page 4178-4201, December 2025.
Abstract In this paper, we study elliptic equations of the form −divL(u)=f(x,u)inΩ,u=0on∂Ω,$$\begin{align*} -\operatorname{div}\mathcal {L}(u)=f(x,u)\quad \text{in }\Omega, \quad u=0 \quad \text{on } \partial \Omega, \end{align*}$$where divL$\operatorname{div}\mathcal {L}$ is the logarithmic double phase operator given by div|∇u|p−2∇u+μ(x)|∇u|q(e+|∇u ...
Vicenţiu D. Rădulescu   +2 more
wiley   +1 more source

Uniform rotundity in every direction of Orlicz-Sobolev spaces

open access: yesJournal of Inequalities and Applications, 2016
In this paper, we study the extreme points and rotundity of Orlicz-Sobolev spaces. Analyzing and combining the properties of both Orlicz spaces and Sobolev spaces, we get the sufficient and necessary criteria for Orlicz-Sobolev spaces equipped with a ...
Fayun Cao, Rui Mao, Bing Wang
doaj   +1 more source

Superlinear perturbations of a double‐phase eigenvalue problem

open access: yesTransactions of the London Mathematical Society, Volume 12, Issue 1, December 2025.
Abstract We consider a perturbed version of an eigenvalue problem for the double‐phase operator. The perturbation is superlinear, but need not satisfy the Ambrosetti–Robinowitz condition. Working on the Sobolev–Orlicz space W01,η(Ω)$ W^{1,\eta }_{0}(\Omega)$ with η(z,t)=α(z)tp+tq$ \eta (z,t)=\alpha (z)t^{p}+t^{q}$ for 1
Yunru Bai   +2 more
wiley   +1 more source

Smooth Points of Orlicz Function Spaces Equipped with S-norm

open access: yesJournal of Harbin University of Science and Technology
Smooth points are important concepts in Banach space geometry theory, which have important applications in estimation theory, probability theory and other fields.
XU Hao, WANG Junming
doaj   +1 more source

K-uniform convexity in Orlicz-Lorentz function space equipped with the Orlicz norm

open access: yesIndian Journal of Pure and Applied Mathematics, 2022
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Di Wang, Yunan Cui
openaire   +1 more source

Home - About - Disclaimer - Privacy