Results 41 to 50 of about 6,795 (190)
Triple Solutions for Nonlinear (μ1(·), μ2(·))—Laplacian–Schrödinger–Kirchhoff Type Equations
In this manuscript, we study a (μ1(·), μ2(·))—Laplacian–Schrödinger–Kirchhoff equation involving a continuous positive potential that satisfies del Pino–Felmer type conditions: K1∫ℝN11/μ1z∇ψμ1z dz+∫ℝN/μ1zVzψμ1z dz−Δμ1·ψ+Vzψμ1z−2ψ+K2∫ℝN11/μ2z∇ψμ2z dz+∫ℝN/μ2zVzψμ2z dz−Δμ2·ψ+Vzψμ2z−2ψ=ξ1θ1z,ψ+ξ2θ2z,ψ inℝN, where K1 and K2 are Kirchhoff functions, Vz is a ...
Ahmed AHMED +3 more
wiley +1 more source
Ruang Orlicz ( ) telah diperkenalkan oleh Z.W. Birnbaum dan W. Orlicz pada sekitar tahun 1931. Ruang Orlicz merupakan salah satu contoh ruang Banach yang dikatakan sebagai perluasan dari ruang , . Rao dan Ren [4] mengembangkan teori ruang Orlicz pada
Al Hazmy, Sofihara
core
Multiplicativity Factors for Orlicz Space Function Norms
Let \(\varphi\) be a Young function on \([0, \infty)\), \((T, \Omega, m)\) be a measure space, and \(L^ \varphi = L^ \varphi (T, \Omega, m)\) be an Orlicz space equipped with the Luxemburg norm \(\rho_ \varphi\) (so that \(L^ \infty \equiv L^ \varphi\) for \(\varphi (s) = \{{0, \atop \infty,} {s \in [0,1]; \atop s > 1.})\). Put \(m_{\inf} = \inf \{m(A)
Arens, Richard +2 more
openaire +3 more sources
Matrix Freedman Inequality for Sub‐Weibull Martingales
ABSTRACT In this paper, we establish a matrix Freedman inequality for martingales with sub‐Weibull tails. Under conditional ψα$$ {\psi}_{\alpha } $$ control of the increments, the top eigenvalue admits a non‐asymptotic tail bound with explicit, dimension‐aware constants.
Íñigo Torres
wiley +1 more source
A Note on the Limit of Orlicz Norms
We generalize the well-known inequality that the limit of the $L^p$ norm of a function as $p\rightarrow\infty$ is the $L^\infty$ norm to the scale of Orlicz spaces.
Cruz-Uribe, David, Scott, Rodney
openaire +2 more sources
Multiplicity results for logarithmic double phase problems via Morse theory
Abstract In this paper, we study elliptic equations of the form −divL(u)=f(x,u)inΩ,u=0on∂Ω,$$\begin{align*} -\operatorname{div}\mathcal {L}(u)=f(x,u)\quad \text{in }\Omega, \quad u=0 \quad \text{on } \partial \Omega, \end{align*}$$where divL$\operatorname{div}\mathcal {L}$ is the logarithmic double phase operator given by div|∇u|p−2∇u+μ(x)|∇u|q(e+|∇u ...
Vicenţiu D. Rădulescu +2 more
wiley +1 more source
Uniform rotundity in every direction of Orlicz-Sobolev spaces
In this paper, we study the extreme points and rotundity of Orlicz-Sobolev spaces. Analyzing and combining the properties of both Orlicz spaces and Sobolev spaces, we get the sufficient and necessary criteria for Orlicz-Sobolev spaces equipped with a ...
Fayun Cao, Rui Mao, Bing Wang
doaj +1 more source
Superlinear perturbations of a double‐phase eigenvalue problem
Abstract We consider a perturbed version of an eigenvalue problem for the double‐phase operator. The perturbation is superlinear, but need not satisfy the Ambrosetti–Robinowitz condition. Working on the Sobolev–Orlicz space W01,η(Ω)$ W^{1,\eta }_{0}(\Omega)$ with η(z,t)=α(z)tp+tq$ \eta (z,t)=\alpha (z)t^{p}+t^{q}$ for 1
Yunru Bai +2 more
wiley +1 more source
Smooth Points of Orlicz Function Spaces Equipped with S-norm
Smooth points are important concepts in Banach space geometry theory, which have important applications in estimation theory, probability theory and other fields.
XU Hao, WANG Junming
doaj +1 more source
K-uniform convexity in Orlicz-Lorentz function space equipped with the Orlicz norm
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Di Wang, Yunan Cui
openaire +1 more source

