Results 221 to 230 of about 38,732 (333)

High‐Performance Zero‐Gap Glycerol‐Fed Electrolyzer for C3 Chemicals and Hydrogen Production

open access: yesAdvanced Materials, EarlyView.
This work presents a dynamic, self‐regulating operation strategy that enables selective glycerol electrooxidation in the OER‐free regime, co‐producing C3 chemicals and hydrogen at cell voltages below 1.25 V. Voltage‐ and temperature‐resolved analyses define optimal operating conditions, achieving a sustained current density of 500 mA cm−2 at ∼1.21 V ...
Shayan Angizi   +11 more
wiley   +1 more source

Advanced Porous Materials for Maritime Carbon Capture

open access: yesAdvanced Materials, EarlyView.
Carbon capture from emission sources, such as marine vessels, has attracted significant attention over the years. To achieve this goal, sorbents such as metal–organic frameworks (MOFs), porous polymer networks (PPNs), covalent organic frameworks (COFs), and their post‐synthetic modifications are currently being explored.
Kelechi Festus   +6 more
wiley   +1 more source

Recent Advances in Collective Behaviors of Micro/Nanomotor Swarms

open access: yesAdvanced Materials, EarlyView.
This review describes the driving forces behind collective motion, explores the self‐organization of micro/nano swarms across zero‐dimensional (0D), one‐dimensional (1D), two‐dimensional (2D), and three‐dimensional (3D) spaces, and highlights their potential in drug delivery, environmental monitoring, and smart devices.
Siwen Sun   +4 more
wiley   +1 more source

Constellations d’objets : le multiple aux frontières de l’art et de l’industrie

open access: yesPerspective, 2019
Marie-Ange Brayer   +2 more
doaj   +1 more source

Colloid‐Mediated Synthesis of Hierarchically Porous Amorphous Catalyst for Durable Industrial‐Scale Water Electrolysis

open access: yesAdvanced Materials, EarlyView.
A colloid‐mediated electroless plating (CMEP) strategy is proposed to fabricate hierarchically porous, amorphous Fe‐doped NiWB electrocatalysts under ambient conditions. The in situ formation of Fe‐W‐O colloidal species guides the formation of robust, porous catalyst layers with excellent mass transfer and durability, sustaining 500 mA cm−2 for 2000 h,
Yu Liao   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy