Results 21 to 30 of about 310,508 (257)

Trace Nickel Activated Biphasic Core‐CuOii/Shell‐CuOi Secondary Microspheres Enable Room Temperature Parts‐Per‐Trillion‐Level NO2 Detection

open access: yesAdvanced Engineering Materials, EarlyView.
An idea of designing novel sensors is proposed by creating appropriate Schottky barriers and vacancies between isomorphous Core‐CuOii/ Shell‐CuOi secondary microspheres and enhancing catalytic and spill‐over effects, and electronegativity via spontaneous biphasic separation, self‐assembly, and trace‐Ni‐doping.
Bala Ismail Adamu   +8 more
wiley   +1 more source

Optimizing Post Friction Stir Welding Heat Treatment in Dissimilar Friction Stir Welded 6061/AlSi10MgMn Joints for Electrical Vehicle Battery Housing

open access: yesAdvanced Engineering Materials, EarlyView.
Microstructural evolution and hardness optimization along the cross‐section of friction stir welded AA6061/AlSi10MgMn joints, for electric vehicle battery housings, were investigated. Postweld aging between 170°C and 220°C enhances hardness uniformity within the nugget zone.
Emanuele Ghio, Emanuela Cerri
wiley   +1 more source

Involvement of rural women in aquaculture: an innovative approach [PDF]

open access: yes, 2000
Although women have proved to be competent in adopting new aquaculture technologies, their role is very much restricted and often ignored. One of the major reasons is the location of aquaculture sites and several sociocultural taboos against women who ...
Shaleesha, A., Stanley, V.A.
core  

Microstructural Evolution and Vacancy Defect Formation in Mn–Mo–Ni RPV Steel Under Low Cycle Fatigue: Insights From EBSD and PALS

open access: yesAdvanced Engineering Materials, EarlyView.
Low‐cycle fatigue damage in Mn–Mo–Ni reactor pressure vessel steel is examined using a combined electron backscatter diffraction and positron annihilation lifetime spectroscopy approach. The study correlates texture evolution, dislocation substructure development, and vacancy‐type defect formation across uniform, necked, and fracture regions, providing
Apu Sarkar   +2 more
wiley   +1 more source

Organic Electrochemical Transistor Channel Materials: Copolymerization Versus Physical Mixing of Glycolated and Alkoxylated Polymers

open access: yesAdvanced Functional Materials, EarlyView.
This work discusses the use of blended channel materials in OECTs. It explores how mixing glycolated and alkoxylated polymers in various ratios offers a simpler and more efficient route to tuning OECT properties. The performance of the polymer blends is compared to the corresponding copolymers, demonstrating similar OECT characteristics, swelling ...
Lize Bynens   +14 more
wiley   +1 more source

Unlocking Ultra‐Long Cycle Stability of Li Metal Electrode by Separators Modified by Porous Red Phosphorus Nanosheets

open access: yesAdvanced Functional Materials, EarlyView.
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang   +9 more
wiley   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Ornamentalism

open access: yes, 2011
"A pleasurable and illuminating collection that sets out the important implications of accessories and shows how conspicuous consumption and ornamental ostentation aim to secure status and display affiliation. "Ornamentalism" explains how accessories carry heavily laden symbolic and mnemonic significance, given their age, beauty, and value."---Richard ...
openaire   +1 more source

Rational Fine‐Tuning of MOF Pore Metrics: Enhanced SO2 Capture and Sensing with Optimal Multi‐Site Interactions

open access: yesAdvanced Functional Materials, EarlyView.
A pore tuning strategy to amplify the multi‐site MOF‐SO2 interactions is proposed to achieve an enhanced trace SO2 capture and chemiresistive sensing in highly stable isostructural DMOFs by annelating benzene rings. This work provides a facile strategy to achieve tailor‐made stable MOF materials for specific multifunctional applications.
Shanghua Xing   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy