Results 51 to 60 of about 122,444 (130)

Decoherence and noise in open quantum system dynamics

open access: yes, 2016
We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting.
Vacchini, Bassano
core   +1 more source

Ash's type II theorem, profinite topology and Malcev products [PDF]

open access: yes, 1991
This paper is concerned with the many deep and far reaching consequences of Ash's positive solution of the type II conjecture for finite monoids. After rewieving the statement and history of the problem, we show how it can be used to decide if a finite ...
Henckell, Karsten   +3 more
core   +1 more source

Erratum to “On lattice isomorphisms of orthodox semigroups”

open access: yesActa Scientarum Mathematicarum, 2022
S. M. Goberstein
semanticscholar   +1 more source

Algebrák és kísérőstruktúráik = Algebras and their related structures [PDF]

open access: yes, 2006
Bebizonyítottuk, hogy - a várakozásokkal ellentétben - véges algebrákra eldönthető, hogy van-e n-változós többségi kifejezésfüggvényük valamely n-re, és hogy véges csoportok izomorfiája nem következik a köbeik részcsoporthálójának izomorfiájából ...
B. Szendrei, Mária   +9 more
core  

Kernels of orthodox semigroup homomorphisms [PDF]

open access: yesJournal of the Australian Mathematical Society, 1976
Any congruence on an orthodox semigroup S induces a partition of the set E of idempotents of S satisfying certain normality conditions. Meakin (1970) has characterized those partitions of E which are induced by congruences on S as well as the largest congruence ρ and the smallest congruence σ on S corresponding to such a partition of E. In this paper a
openaire   +2 more sources

Identities of orthodox semigroup rings

open access: yesSemigroup Forum, 1994
Let \(R\) be a ring with identity, let \(S\) be a semigroup, and let \(T\) be the subsemigroup of \(S\) generated by all idempotents of \(S\). The semigroup ring of \(S\) over \(R\) is denoted by \(R[S]\). The author is interested in the two following problems. Problem 1: when is \(R[S]\) a ring with identity? Problem 2: suppose that \(R[S]\) is a ring
openaire   +2 more sources

Orthodox ternary semigroups

open access: yes, 2011
Using the notion of idempotent pairs we dene orthodox ternary semigroups and generalize various properties of binary orthodox semigroups to the case of ternary semigroups. Also right strongly regular ternary semigroups are characterized.
Sheeja, G., SriBala, S.
openaire   +1 more source

Orthodox congruences on regular semigroups

open access: yesSemigroup Forum, 1988
We show that every orthodox congruence on a regular semigroup S is completely described by an orthodox congruence pair for S. A pair \((\xi,K)\) consisting of a normal congruence \(\xi\) on \(\) such that \(/\xi\) is a band and a normal subsemigroup K of S is said to be an orthodox congruence pair for S if, for all \(a,b\in S\), \(a'\in V(a)\), \(x\in \
openaire   +2 more sources

О e-многообразиях присоединенно вполне регулярных колец

open access: yes, 2005
Доказывается, что е-многообразие присоединенно ортодоксальных колец является решеточным объединением е-многообразий присоединенно левоинверсных и присоединенно правоинверсных ...
Танана, Г. В.
core  

Home - About - Disclaimer - Privacy