Results 51 to 60 of about 122,444 (130)
Decoherence and noise in open quantum system dynamics
We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting.
Vacchini, Bassano
core +1 more source
Ash's type II theorem, profinite topology and Malcev products [PDF]
This paper is concerned with the many deep and far reaching consequences of Ash's positive solution of the type II conjecture for finite monoids. After rewieving the statement and history of the problem, we show how it can be used to decide if a finite ...
Henckell, Karsten +3 more
core +1 more source
Erratum to “On lattice isomorphisms of orthodox semigroups”
S. M. Goberstein
semanticscholar +1 more source
Algebrák és kísérőstruktúráik = Algebras and their related structures [PDF]
Bebizonyítottuk, hogy - a várakozásokkal ellentétben - véges algebrákra eldönthető, hogy van-e n-változós többségi kifejezésfüggvényük valamely n-re, és hogy véges csoportok izomorfiája nem következik a köbeik részcsoporthálójának izomorfiájából ...
B. Szendrei, Mária +9 more
core
Kernels of orthodox semigroup homomorphisms [PDF]
Any congruence on an orthodox semigroup S induces a partition of the set E of idempotents of S satisfying certain normality conditions. Meakin (1970) has characterized those partitions of E which are induced by congruences on S as well as the largest congruence ρ and the smallest congruence σ on S corresponding to such a partition of E. In this paper a
openaire +2 more sources
Identities of orthodox semigroup rings
Let \(R\) be a ring with identity, let \(S\) be a semigroup, and let \(T\) be the subsemigroup of \(S\) generated by all idempotents of \(S\). The semigroup ring of \(S\) over \(R\) is denoted by \(R[S]\). The author is interested in the two following problems. Problem 1: when is \(R[S]\) a ring with identity? Problem 2: suppose that \(R[S]\) is a ring
openaire +2 more sources
Using the notion of idempotent pairs we dene orthodox ternary semigroups and generalize various properties of binary orthodox semigroups to the case of ternary semigroups. Also right strongly regular ternary semigroups are characterized.
Sheeja, G., SriBala, S.
openaire +1 more source
Orthodox congruences on regular semigroups
We show that every orthodox congruence on a regular semigroup S is completely described by an orthodox congruence pair for S. A pair \((\xi,K)\) consisting of a normal congruence \(\xi\) on \(\) such that \(/\xi\) is a band and a normal subsemigroup K of S is said to be an orthodox congruence pair for S if, for all \(a,b\in S\), \(a'\in V(a)\), \(x\in \
openaire +2 more sources
О e-многообразиях присоединенно вполне регулярных колец
Доказывается, что е-многообразие присоединенно ортодоксальных колец является решеточным объединением е-многообразий присоединенно левоинверсных и присоединенно правоинверсных ...
Танана, Г. В.
core

