Results 311 to 320 of about 996,598 (373)

On orthogonal polynomials

Analysis Mathematica, 1975
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(рn(х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I.
P. Túrán
openaire   +3 more sources

Orthogonal Polynomials on the Unit Circle

Encyclopedia of Special Functions: The Askey-Bateman Project, 2020
ACubic Decompositionof Sequencesof Orthogonal Polynomialson the Unit Circle MANUEL ALFARO*, MARI¤A JOSE¤ CANTERO b,y and FRANCISCOMARCELLA¤ Nc,z Departamento de Matema¤ ticas,Universidad de Zaragoza, 50009 Zaragoza, Spain; Departamento de Matema¤ tica ...
Manuel Alfaroa
semanticscholar   +1 more source

Constructing Orthogonal Polynomials

Missouri Journal of Mathematical Sciences, 2023
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +1 more source

Orthogonal Polynomials

1966
Publisher Summary This chapter focuses on simple sets of orthogonal polynomials. These sets of polynomials arise in various ways, one of which is as the solutions of a class of differential equations. It has been shown that, under certain conditions, given any interval and a positive weight function on that interval, there exists a corresponding set ...
Wilhelm Magnus   +2 more
openaire   +2 more sources

Stochastic Duality and Orthogonal Polynomials

Springer Proceedings in Mathematics & statistics, 2017
For a series of Markov processes we prove stochastic duality relations with duality functions given by orthogonal polynomials. This means that expectations with respect to the original process (which evolves the variable of the orthogonal polynomial) can
C. Franceschini, C. Giardinà
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy