Results 311 to 320 of about 525,717 (358)
Some of the next articles are maybe not open access.
Illumination of Orthogonal Polygons with Orthogonal Floodlights
International Journal of Computational Geometry & Applications, 1998We provide the first tight bound for covering an orthogonal polygon with n vertices and h holes with vertex floodlights (guards with restricted angle of vision). In particular, we provide tight bounds for the number of orthogonal floodlights, placed at vertices or on the boundary, sufficient to illuminate the interior or the exterior of an orthogonal ...
James Abello +3 more
openaire +2 more sources
Atrial Fibrillation Prediction With Residual Network Using Sensitivity and Orthogonality Constraints
IEEE journal of biomedical and health informatics, 2019Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia. The atrial beat is irregular during AF, which causes blood flow hardly. This may cause blood clot formation and cardioembolic strokes.
Amin Jalali, Minho Lee
semanticscholar +1 more source
Analysis Mathematica, 1975
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(рn(х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I.
S.M. Ahn, E.I. Jury
openaire +5 more sources
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(рn(х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I.
S.M. Ahn, E.I. Jury
openaire +5 more sources
Orthogonal and non-orthogonal hybrids
Journal of Molecular Structure: THEOCHEM, 1988Abstract Ab initio MO wave functions for XHn molecules are analyzed in terms of the hybridization concept. It was found that for X from the first row (especially for carbon) the hybrid-AOs so obtained are close to orthogonal. If X is from the second row, different hybrids on the same atom overlap strongly and the well-known relations between degree ...
openaire +2 more sources
A complete characterization of Birkhoff-James orthogonality in infinite dimensional normed space
, 2017In this paper, we study Birkhoff-James orthogonality of bounded linear operators and give a complete characterization of Birkhoff-James orthogonality of bounded linear operators on infinite dimensional real normed linear spaces.
D. Sain, K. Paul, A. Mal
semanticscholar +1 more source
Algebraic orthogonality and commuting projections in operator algebras
, 2017We provide an order-theoretic characterization of algebraic orthogonality among positive elements of a general C*-algebra by proving a statement conjectured in [12].
A. K. Karn
semanticscholar +1 more source
Orthogonal and bounded orthogonal spectral representations
Rendiconti del Circolo Matematico di Palermo, 1995zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +2 more sources
Journal of Mathematical Physics, 1970
An essentially unique method of forming an orthonormalized set of vectors from an independent set of n vectors is presented. The resulting set is proven to maximize a certain quartic form in the original vectors.
Schweinler, H. C., Wigner, Eugene P.
openaire +1 more source
An essentially unique method of forming an orthonormalized set of vectors from an independent set of n vectors is presented. The resulting set is proven to maximize a certain quartic form in the original vectors.
Schweinler, H. C., Wigner, Eugene P.
openaire +1 more source
Univocal or Orthogonal Estimators of Orthogonal Factors
Psychometrika, 1963The defects of the least-squares or multiple-regression equation approach to estimating orthogonal factors are discussed and transformations of the beta weights are derived which remove these defects with minimum loss in correlations between estimators and true factor scores.
openaire +3 more sources
Orthogonal latin squares with orthogonal subsquares [PDF]
Hanfried Lenz, David A. Drake
openaire +1 more source

