Results 171 to 180 of about 6,846,631 (327)

Interfacial Bioengineering of Dynamic Networks Hybrid Hydrogel for Programmed Intervention in Oral Precancerous Epithelial States

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops a dual‐bioinspired hydrogel, MSA@PGel (macrophage membrane‐coated and salvianolic acid B/5‐aminolevulinic acid co‐loaded liposomes embedded in a polydopamine‐based gel), that integrates macrophage membrane‐mediated active targeting and mussel‐inspired wet adhesion for programmed intervention in oral precancerous lesions.
Xiaoxian Zhao   +8 more
wiley   +1 more source

Peptomer Linkers Enable Kinetic Control over Co‐Delivery of Multiple Chemotherapeutics

open access: yesAdvanced Healthcare Materials, EarlyView.
A key challenge in combinatorial chemotherapeutic drug delivery is independent control over release kinetics, especially with drugs of similar size and structure. Here, peptoid substitutions to proteolytically degradable peptides enabled the design of fast and slow‐releasing drug linkers.
Carolyn M. Watkins   +3 more
wiley   +1 more source

A Biomimetic Buffering Hydrogel Scaffold for Long‐Term Culture of Patient‐Derived Tumor Organoids

open access: yesAdvanced Healthcare Materials, EarlyView.
A biomimetic fibrous buffering hydrogel controls the local acidification at the tumoroid/hydrogel interface at the physiologically relevant level over 21‐day culture. The buffering effect promotes cancer cell proliferation in the tumoroids and supports the structural integrity and mechanical properties of the hydrogel scaffold over long‐term tumoroid ...
Elizaveta Gusarova   +7 more
wiley   +1 more source

Injectable Stimuli‐Responsive Amphiphilic Hydrogel for Rapid Hemostasis, Robust Tissue Adhesion, and Controlled Drug Delivery in Trauma and Surgical Care

open access: yesAdvanced Healthcare Materials, EarlyView.
Fast‐acting hydrogel seals bleeding wounds as the illustrated injectable, pH‐responsive network rapidly gels in situ to stop hemorrhage, adhere strongly to wet tissue, and release antibiotics in a controlled, pH‐dependent manner. The material withstands high pressures, shows excellent biocompatibility, and degrades safely, offering a versatile platform
Arvind K. Singh Chandel   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy