Results 11 to 20 of about 3,556 (167)
On a variant of Čebyšev’s inequality of the Mercer type
We consider the discrete Jensen–Mercer inequality and Čebyšev’s inequality of the Mercer type. We establish bounds for Čebyšev’s functional of the Mercer type and bounds for the Jensen–Mercer functional in terms of the discrete Ostrowski inequality ...
Anita Matković, Josip Pečarić
doaj +1 more source
Generalizations of Hardy-Type Inequalities by Montgomery Identity and New Green Functions
In this paper we extend general Hardy’s inequality by appropriately combining Montgomery’s identity and Green functions. Related Grüss and Ostrowski-type inequalities are also derived.
Kristina Krulić Himmelreich +3 more
doaj +1 more source
Ostrowski Type Inequalities [PDF]
The following generalization of Ostrowski's inequality is given: Let \(f\in C^{n+1}([a,b])\), \(n\in\mathbb{N}\) and \(y\in [a,b]\) be fixed, such that \(f^{(k)}(y)=0\), \(k=1,\dots,n\). Then \[ \Biggl|{1\over b-a} \int^b_a f(t)dt- f(y)\Biggr|\leq {|f^{(n+1)}|_\infty\over (n+2)!} \Biggl({(y-a)^{n+2}+ (b-y)^{n+2}\over b-a}\Biggr).
openaire +1 more source
Fractional Ostrowski Type Inequalities via $\phi-\lambda-$Convex Function [PDF]
In this paper, we aim to state well-known Ostrowski inequality via fractional Montgomery identity for the class of $\phi-\lambda-$ convex functions. This generalized class of convex function contains other well-known convex functions from literature ...
Ali Hassan, Asif Khan
doaj +1 more source
Abstract Supplement Abstracts from IAS 2025, the 13th IAS Conference on HIV Science, 13 - 17 July, Kigali, Rwanda & Virtual. [PDF]
Journal of the International AIDS Society, Volume 28, Issue S4, July 2025.
europepmc +2 more sources
Generalizations of Steffensen's inequality via Fink's identity and related results II [PDF]
We use Fink's identity to obtain new identities related to generalizations of Steffensen's inequality. Ostrowski-type inequalities related to these generalizations are also given.
Pecaric, Josip +2 more
core +2 more sources
An Application of Hayashi’s Inequality for Differentiable Functions
In this work, we offer new applications of Hayashi’s inequality for differentiable functions by proving new error estimates of the Ostrowski- and trapezoid-type quadrature rules.
Mohammad W. Alomari +1 more
doaj +1 more source
On inequalities of Jensen-Ostrowski type [PDF]
We provide new inequalities of Jensen-Ostrowski type, by considering bounds for the magnitude of (Formula Presented), with various assumptions on the absolutely continuous function f:[a,b]→C and a μ-measurable function g, and a complex number λ ...
Cerone, P +2 more
core +1 more source
Fractional Ostrowski-type Inequalities via $(\alpha,\beta,\gamma,\delta)-$convex Function [PDF]
In this paper, we are introducing for the first time a generalized class named the class of $(\alpha,\beta,\gamma,\delta)-$convex functions of mixed kind.
Ali Hassan +3 more
doaj +1 more source
On Ostrowski type inequalities
AbstractIn this paper, new forms of Ostrowski type inequalities are established for a general class of fractional integral operators. The main results are used to derive Ostrowski type inequalities involving the familiar Riemann-Liouville fractional integral operators and other important integral operators.
Agarwal, Ravi P. +2 more
openaire +1 more source

